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a b s t r a c t 

RGB-D indoor scene classification is an essential and challenging task. Although convolutional neural net- 

work (CNN) achieves excellent results on RGB-D object recognition, it has several limitations when ex- 

tended towards RGB-D indoor scene classification. 1) The semantic cues such as objects of the indoor 

scene have high spatial variabilities. The spatially rigid global representation from CNN is suboptimal. 

2) The cluttered indoor scene has lots of redundant and noisy semantic cues; thus discerning discrim- 

inative information among them should not be ignored. 3) Directly concatenating or summing global 

RGB and Depth information as presented in popular methods cannot fully exploit the complementarity 

between two modalities for complicated indoor scenarios. To address the above problems, we propose 

a novel unified framework named Multi-modal Attentive Pooling Network (MAPNet) in this paper. Two 

orderless attentive pooling blocks are constructed in MAPNet to aggregate semantic cues within and be- 

tween modalities meanwhile maintain the spatial invariance. The Intra-modality Attentive Pooling (IAP) 

block aims to mine and pool discriminative semantic cues in each modality. The Cross-modality Atten- 

tive Pooling (CAP) block is extended to learn different contributions across two modalities, which further 

guides the pooling of the selected discriminative semantic cues of each modality. We further show that 

the proposed model is interpretable, which helps to understand mechanisms of both scene classification 

and multi-modal fusion in MAPNet. Extensive experiments and analysis on SUN RGB-D Dataset and NYU 

Depth Dataset V2 show the superiority of MAPNet over current state-of-the-art methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Scene classification is one of the fundamental problems in

computer vision. The goal of scene classification is to annotate

the images with scene classes, such as mountain, football field

and classroom. Although many studies focus on the outdoor scene

[1–3] , recently more and more researches are conducted on the

indoor scene [4,5] due to its wide applications in robotics, home

intelligence and surveillance. Compared with the outdoor scene,

the indoor scene is much more complicated for larger variations

in light, shape, layout and severer occlusions. Some of these

challenges are intrinsic due to the loss of 3D information in image

capturing. Fortunately, with the release of the affordable depth

sensors such as Microsoft Kinect, it is promising to overcome some
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f these problems. In this paper, we focus on the RGB-D indoor

cene classification. 

Indoor scene images are very different from the object-centric

mages. An indoor scene is the abstract of various semantic cues

hich include multiple objects of which classes are open-set and

ontextual relationships between them. Classifying the scene needs

ggregation of all these semantic cues. For example, recognizing

he chair or the computer alone can not classify the scene as the

ome office . The chair and the computer can also exist in other

cene categories such as the office and the computer room . Peo-

le thus need to recognize multiple objects in the scene, perceive

he context and then aggregate such information to infer the scene

s the home office correctly. Although Convolutional Neural Net-

ork (CNN) achieves superior performance on the classification of

bject-centric images, it gets less ideal result when directly ap-

lied to complex scene images. The reason lies in the fact that

he semantic cues could be highly spatially variant in the scene.

s shown in Fig. 1 (a), the bed and the closet could be at any posi-

ions in the bedroom . The CNN features extracted from global scene
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Fig. 1. Illustration of the difficulties for the RGB-D indoor scene classification. The RGB and Depth (We use HHA (Horizontal Disparity, Height above the ground, Angle of 

surface normal) [15] to encode the depth images in this paper.) pairs in SUN RGB-D Dataset are shown. (a) The semantic cues are highly spatially variable in indoor scene, 

for example the bed and the closet can be in any positions in bedroom . (b) The indoor scene is cluttered so that some semantic cues are not useful for classification. For 

example, although the sofa is salient in the image, it is not a helpful cue to recognize library . (c) The RGB and Depth sensor emphasize different semantic cues. The RGB 

sensor can well delineate the blackboard while the Depth sensor can better capture the shape of the table . 
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mages are too spatially rigid to capture the invariance of semantic

ues [6] . 

To address the high spatial variation problem in indoor scene,

 lot of previous researches propose to utilize orderless pooling

o maintain spatial invariance in aggregation for scene classifica-

ion. The orderless pooling means that the pooling results are in-

ependent to the arrangement of the sequence to be pooled. These

ethods usually first extract local descriptors in different locations

nd scales and then use encoding methods, such as Fisher Vector

FV) [7] and Vector of Locally Aggregated Descriptors (VLAD) [8] , to

ggregate these local descriptors [9–12] . The local descriptors in-

ludes Scale-Invariant Feature Transform (SIFT), Histogram of Ori-

nted Gradients (HOG) and features densely extracted from CNN

r semantic cues such as objects and semantic attributes. These

ncoding-based methods, though utilized widely, have two com-

on problems for indoor scene classification. Firstly, the codebook

s usually formed by clustering all the local descriptors. The code-

ook is able to discard some noise. However, for indoor scenes that

re always cluttered, local descriptors that commonly appeared are

ot necessarily helpful for scene classification. For example, as il-

ustrated in Fig. 1 (b), although the sofa always appears in indoor

cenes and it’s salient in the image, it’s not a useful cue to rec-

gnize the scene as library . It may even cause the scene misclas-

ified as the living room . Secondly, the encoding methods such as

isher Vector are hard to be integrated into CNN [13,14] . The exist-

ng methods usually process feature extraction and feature encod-

ng independently, which also leads to sub-optimal feature repre-

entation. 

Another issue is how to fuse RGB and Depth information

ffectively. Traditional methods usually use handcrafted meth-

ds to extract the RGB and Depth cues and combine them us-

ng summation or concatenation [16–18] . In deep learning based

ethods, most previous work directly concatenates or sums in-

ormation of two modalities at different levels [4,15,19,20] . These

opular methods are too simple to fully exploit the relationships

cross modalities and they suffer from two drawbacks when ap-

lied to indoor scene classification. Firstly, at global level, the con-

ributions of the RGB and Depth information are presumed to be

xed for all image pairs. However, for different scenarios, RGB

nd Depth information should have different roles. For example,

or images captured in dim scenarios, Depth channels should be
aid more attention. While for noisily captured depth images, RGB

hannels tend to be more reliable. Secondly, at local level, the

ontributions of the RGB and Depth modalities are set to be the

ame for all local semantic cues in a single RGB-D image pair.

owever, the RGB sensor captures more color information and the

epth sensor focuses more on geometric information. For exam-

le in Fig. 1 (c), in the classroom , the RGB image can delineate the

olor and texture features better for the blackboard which is ig-

ored by the depth sensor while the depth sensor captures more

nvariant shape information of the table and the chair than the RGB

ensor. 

To address the above issues, in this paper, we propose a unified

ramework named Multi-modal Attentive Pooling Network (MAP-

et) tailored specifically to the task of RGB-D indoor scene classi-

cation. The MAPNet firstly obtains a set of local semantic cues

y extracting CNN features on region proposals. To compute ef-

ciently, we use ROI pooling [21] on the top of last convolu-

ional layer to obtain features of the corresponding region pro-

osals. The local features which represent local semantic cues

re aggregated in two stages. In the first stage, the local seman-

ic cues in each modality are pooled by Intra-modality Attentive

ooling (IAP) block. To select out discriminative semantic cues,

he attention mechanism is incorporated into orderless pooling.

wo attentive pooling strategies, the class-agnostic attentive pool-

ng and class-aware attentive pooling, are further explored and

ompared in IAP block. In the second stage, the local semantic

ues across two modalities are pooled by Cross-modality Attentive

ooling (CAP) block, which extends the attention mechanism to

earn different contributions across modalities for different types

f semantic cues. The obtained contributions across two modali-

ies further guide the pooling of the selected discriminative seman-

ic cues from two modalities. Although the MAPNet is learned in

wo stages, the parameters are optimized in an end-to-end man-

er. Simple yet effective, the proposed framework is easy to re-

mplement. 

Our contributions can be summarized in fourfold. The first

ontribution is towards semantic cues aggregation. Instead of di-

ectly using fully connected layers or encoding methods such as

V and VLAD in aggregation, we propose attentive pooling struc-

ures which can maintain spatial invariance meanwhile discern

iscriminative semantic cues. The second contribution addresses
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the RGB and Depth data fusion. Unlike other popular methods that

directly presume equal contributions for RGB and Depth modali-

ties, the proposed fusion model allows for adjustments of contri-

butions across RGB and Depth for different discriminative semantic

cues. Thirdly, we show that the proposed MAPNet is interpretable.

Through visualization, we analyze the mechanisms of both scene

classification and RGB-D fusion. Finally, we verify our methods on

two popular RGB-D datasets: SUN RGB-D Dataset and NYU Depth

V2 Dataset. The proposed MAPNet achieves the state-of-the-art re-

sults on both datasets. 

2. Related work 

2.1. Scene classification 

Most existing methods for scene classification consist of three

steps: 1) learn feature representations in different locations or

scales of scene images, 2) aggregate or pool these features to

obtain the scene representation, 3) based on the representation,

learn some widely used classifiers such as Support Vector Machine

(SVM) and Neural Network. For the first step, traditional meth-

ods extract hand-crafted features such as SIFT [22] , GIST [23] and

HOG [24] . In deep learning based methods, some studies [25] di-

rectly extract features from the penultimate fully connected layer

of the CNN model that is pre-trained on the ImageNet or Places

Dataset [26] . Some other studies [1,27,28] propose to use the poste-

rior probabilities of objects in the scene to represent the scene im-

age. For the aggregation step, some existing researches use infor-

mation concatenation [1,25,29] . The concatenation usually leads to

high-dimensional representation and thus will increase the com-

puting consumption. Besides, these methods concatenate all local

semantic cues without information selection, which may lead to

models less robust towards redundant and noisy information in

indoor scenes [30,31] . The mainstream aggregation methods for

scene classification, instead, use encoding-based pooling methods

such as FV and VLAD [10,11,32,33] . The encoding methods, though

effective and popular, for they can overcome the spatial variabili-

ties in scene classification, tend to ignore information selection in

aggregation and are hard to be integrated into an end-to-end deep

learning framework. Recently, some researches [11,13,14] make ef-

forts to implement the encoding process into an end-to-end net-

work. However, they either use the approximation in encoding or

need complex implementation. In this paper, instead of applying

simple concatenation or using encoding strategies, we explore and

propose simple but effective attentive orderless pooling structures

for aggregation in scene classification. Incorporated with the atten-

tional mechanisms, it can attend on discriminative semantic cues

in the pooling and it’s optimized in an end-to-end manner. 

2.2. RGB and depth data fusion 

With the release of affordable depth sensors recently, how to

utilize the complementary information in RGB and Depth modal-

ities attracts a lot of researchers. Most previous methods on RGB

and Depth data fusion can be summarized into three categories:

image-level fusion [4] , feature-level fusion [19] , score-level fusion

[34] . These methods all regard the RGB and Depth information

with the same and equal contributions for all images. Recently,

some researchers propose to further emphasize the correlations

between the RGB and Depth [35,36] . However, these methods all

focus on the relations in aggregated feature level. Nevertheless, en-

forcing all the local semantic cues in two modalities to follow the

same relations in fusion is not suitable for indoor scene images.

Furthermore, all the above mentioned methods are lack of inter-

pretability. In this paper, the proposed framework models the re-

lations between RGB and Depth modalities at local level, adapting

the attention weights across the two modalities for different local
emantic cues. The proposed method is able to explicitly visualize

he contributions from RGB and Depth modalities, providing better

nderstanding of the fusion process. 

.3. Attention mechanisms 

One of the elaborate designations of the human visual system is

he attention mechanism. Instead of absorbing all the information

n a fixed procedure, human attention mechanisms choose most

alient features adaptively for certain requirements. Recently, a lot

f studies show that by incorporating attention mechanisms into

omputer vision, the context information can be better utilized

37,38] . The common idea is to read external memories/contexts

hrough an attention scheme. These architectures usually employ

he Long Short Term Memory network (LSTM) [39] to model the

equential input and output. In our case on RGB-D scene classi-

cation, the attention mechanism is used for pooling the seman-

ic cues and fusing multi-modal information. In practice, the local

emantic cues can be viewed as memories, and the context can

e aggregated from this information. Recently, some papers also

ropose to incorporate attention mechanisms into the pooling op-

ration. Yang et al. [40] propose to aggregate features of frames

n videos to emphasize more discriminative frames for video face

ecognition. Girdhar and Ramanan [41] propose to use the combi-

ation of bottom-up saliency and top-down attention to approxi-

ate the second order pooling for action recognition. The atten-

ion mechanism architecture in this paper is different from them.

irstly, our attention model aims to aggregate the local semantic

ues in each modality and fuse semantic cues across the mul-

iple modalities for RGB-D indoor scene classification. Secondly,

he proposed attentive pooling model is class-aware. The attention

eight of certain semantic cues varies according to different po-

ential scene categories. Moreover, the proposed model does not

eed extra information, unlike Girdhar and Ramanan [41] , in which

he bottom-up saliency needs to be learned from human pose key

oints in the implementation of attentive pooling. 

. Method 

.1. Overview of framework 

The framework of the proposed MAPNet for RGB-D indoor

cene classification is illustrated in Fig. 2 . The local semantic cues

re firstly extracted on RGB and Depth pairs. The MAPNet then ag-

regates the RGB and Depth local semantic cues in two learning

tages. The first learning stage focuses on discriminative semantic

ues aggregation for each modality of the scene image. The second

earning stage aims to aggregate selected discriminative semantic

ues across RGB and Depth modalities. 

To extract local semantic cues in each modality, we propose to

tilize region proposals of the scene image. The public available

egion proposal extractor [42] is employed, which needs no extra

ounding box annotations and object labels. The region proposals

an be produced on single modal image or RGB and Depth image

air. In practice, since the extractor [42] is originally designed for

olor images, we generate region proposals based on the RGB im-

ge. Notice that other region proposal extractors and strategies can

lso be integrated into MAPNet off the shelf. 

Suppose a pair of RGB and Depth image ( x r , x d ), the region pro-

osals extracted on the x r are { p 1 , . . . , p i , . . . , p L }, where p i repre-

ents position of the i th region proposal in x r and L is the num-

er of region proposals. The regions the i th proposal crops out

n the image x r and x d are denoted as x r p i and x d p i 
. The local se-

antic cues in { x r p i } and { x d p i 
} include part of object, single object

nd multiple co-occurrent objects. After we get regions of inter-

st, two Convolutional Neural Networks (CNNs) are employed to

Administrator
高亮

Administrator
高亮
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Fig. 2. Illustration of the whole framework of MAPNet. The MAPNet is learned in two stages. The first learning stage aggregates discriminative semantic cues in each 

modality by using Intra-modality Attentive Pooling block. The second learning stage aggregates selected discriminative semantic cues of each modality across modalities by 

using Cross-modality Attentive Pooling block. 
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xtract features for { x r p i } and { x d p i 
}, respectively. We use AlexNet

43] as our backbone CNN structure. The AlexNet consists of 5 con-

olutional layers denoted as con v 1 − con v 5 and 3 fully connected

ayers denoted as f c 6 − f c 8 in our paper. For each modality, we

ut all the cropped regions { x p i } of an image through the CNN

nd use the outputs from the fc 6 layer as the local semantic cues.

n order to obtain representations of the proposed regions effi-

iently, we use Region of Interest (RoI) pooling [21] on the global

epresentations conv 5 ( x 
r ) and conv 5 ( x 

d ) from the last convolutional

ayers of the networks. Instead of calculating the representations

or each proposal, the ROI pooling crops the representation of each

egion proposal from global representation from conv 5 ( x ). Each

ropped local representation is max-pooled to small feature map

ith fixed size (such as 7 × 7) in ROI pooling. The obtained lo-

al representations are further transformed by the fully connected

ayer fc 6 , the outputs of which are denoted as { f r } and { f d } for

GB and Depth respectively. The features of the proposed regions

 f r } and { f d } can represent various local semantic cues in RGB and

epth scene image. 

In the first learning stage, the local representations { f r } and { f d }

re aggregated to obtain the scene classification decision in each

odality respectively by the Intra-modality Attentive Pooling (IAP)

lock. The IAP blocks utilized in two modalities are of the same

tructure but do not share weights. For brevity, we denote either

 

r or x d as x in the first learning stage. The details of the IAP block

ill be described in Section 3.2 . 

The network constructed in the second learning stage consists

f two streams, operating on RGB and Depth image respectively.

ach stream is initialized with the weights optimized in the first

tage learning. The Cross-modality Attentive Pooling (CAP) block is

onstructed to aggregate local representations { f r } and { f d } from

oth modalities based on the learned aggregation of each modal-

ty in the first learning stage. The details of the CAP block will be

escribed in Section 3.3 . 

Towards network optimization, the classification loss is de-

igned based on the outputs of the IAP and CAP in two learning

tages. In the first learning stage, two networks for RGB and Depth

ocal semantic cues aggregation are optimized independently. Al-

hough trained in two stages, the parameters in MAPNet are opti-

ized in an end-to-end manner. 
n  
.2. Intra-modality attentive pooling block 

The inputs of the Intra-modality Attentive Pooling (IAP) block

re local representations { f i }, where i = 1 , 2 , . . . , L , and L is the

umber of region proposals. The IAP block aims to aggregate them

nd outputs the classification decision. 

.2.1. Average pooling 

As shown in Fig. 1 (a), the local semantic cues ( closet and bed )

an appear anywhere in the scene image and the locations of these

emantic cues do not influence the definition of the scene as bed-

oom . Thus we assume the aggregation of local semantic cues is in-

ariant to spatial locations. The most common operation to achieve

his goal is average pooling. 

The structure to achieve average pooling strategy in the IAP

lock is designed as illustrated in Fig. 3 (a). Specifically, it con-

ists of fully connected layers and average pooling operator. In the

tructure, the { f i } are firstly transformed through fully connected

ayer fc 7 ( · ), the outputs of which are represented as { fc 7 ( f i )}. The

verage pooling operator is then conducted to the { fc 7 ( f i )} to ob-

ain the aggregated representation. Ultimately, the final classifi-

ation logits can be obtained by using another fully connected

ayer fc 8 ( · ) to transform the aggregated representation. The aver-

ge pooling strategy of the IAP block can be written as: 

IA P ave _ pool ing ( x ) = f c 8 

( 

1 

L 

L ∑ 

i =1 

f c 7 ( f i ) 

) 

(1) 

.2.2. Class-agnostic attentive pooling 

Although the average pooling strategy is easy to implement and

as been widely used, it always focuses more on salient regions

here the proposals are frequently extracted. However, the indoor

cene images are captured from different viewpoints, the most

alient region do not necessarily represent the most discriminative

emantic cues for indoor scene classification. Moreover, some of

hese salient regions may mislead classification. For example, the

alient region computer is not discriminative enough to discern the

ffice and the computer room . 

To overcome this problem, we incorporate the attention mecha-

ism to enhance the discriminative capability of pooling. The intu-
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Fig. 3. The detailed MAPNet structure in the first learning stage. The input image can be RGB or HHA image. Three pooling strategies for Intra-modality Attentive Pooling 

(IAP) block are explored and compared: (a) average pooling. (b) class-agnostic attentive pooling. (c) class-aware attentive pooling. The “S_c” represents softmax operation 

across the attention scores of region proposals and the “S_r” represents softmax operation across the classification scores of each region proposal. 
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ition behind this is that human being recognizes a scene by select-

ing and attending on some key parts of the scene. The structure

that achieves class-agnostic attentive pooling in the IAP block is

shown in Fig. 3 (b). In the block, an extra attention branch is con-

structed to read all local features { f i } and output the importance of

each proposed region for indoor scene classification. The attention

branch can be written as: 

e i = f att ( f i ) (2)

a i = 

exp ( e i ) ∑ L 
i =1 exp ( e i ) 

(3)

where the specific form of f att ( · ) can be represented by two-

stacked fully connected layers (1024-1). { e i } are passed to the soft-

max operator to generate positive weights { a i } with 

∑ L 
i =1 a i = 1 .

The a i represents the importance of the semantic cues in the i th

proposed region regardless of scene class. After obtaining the at-

tention weights, the class-agnostic attentive pooling strategy in the

IAP block can be represented as: 

IAP cag _ pooling (x ) = f c 8 

( 

L ∑ 

i =1 

g( f i ) ◦ a i 

) 

(4)

where the operation ◦ means scalar multiplication and g ( · ) repre-

sents the linear transformation for local features. In practice, g ( · )

is formed by a fully connected layer with an output dimension of

1024. 

3.2.3. Class-aware attentive pooling 

The class-agnostic attentive pooling assigns different weights

to different proposed regions, enabling the discriminative seman-

tic cues to be salient in aggregation. However, it does not consider

class information when learning the attention weights. The { a i } are

learned regardless of the scene classes. However, intuitively, the

same semantic cue has different roles for different types of scenes.

For example, the book is a vital semantic cue for library while it is

not such an important clue for living room . To address such prob-

lem, as illustrated in Fig. 3 (c), we design the class-aware attentive

pooling strategy in IAP block inspired by Bilen and Vedaldi [44] . 

The key difference between the class-aware attentive pooling

and class-agnostic attentive pooling lies in the attention branch.

The attention branch in class-aware attentive pooling learns class-

specific attention weights { a i }, where a i is a vector with dimension

C . The element a ic of a represents the attention weight of the i th
i 
roposed region for the c th scene class. a i can be computed by: 

e i = t att ( f i ) (5)

a i = 

exp ( e i ) ∑ L 
i =1 exp ( e i ) 

(6)

here the form of t att ( · ) can be represented by two-stacked fully

onnected layers (1024- C ). The softmax operator is conducted on

 e i } to generate positive weights and guarantee 
∑ 

i a ic = 1 . 

Due to a i ∈ R 

C , directly combining the class specific attention

eights with the local features f i ∈ R 

D , where D is feature dimen-

ion, is not compatible. Observing that due to the linearity of the

ooling operator, the attention weights can be applied to aggregate

ot only the local features but also the classification logits of pro-

osed regions. The class-aware attentive pooling structure in IAP

lock is thus designed and represented as: 

b i = g( f i ) (7)

IAP caw _ pooling (x ) = 

L ∑ 

i =1 

a i � b i (8)

here b i ∈ R 

C and � means the element-wise multiplication. g ( · )

ere is constructed by two stacked fully connected layers (1024-

 ) and the softmax operator. Suppose the outputs from the two

tacked fully connected layers are { o i }, the softmax operator is ap-

lied to { o i } to generate the classification logits { b i }, where for

ach i , 
∑ 

c b ic = 1 . The b i represents the probability of the scene

elonging to a specific scene category in terms of semantic cues

n the i th propose regions. The IAP caw _ pooling (x ) aggregates the lo-

al semantic cues by utilizing class-aware attention weights to sum

he classification probabilities of the discriminative semantic cues. 

The class-aware attentive pooling can be also regarded as pro-

essing the local features with two branches, the attention branch

nd the classification branch. When the MAPNet classifies indoor

cenes with class aware attentive pooling, the attention branch

utputs { a i } which represent which semantic cues should be at-

ended more on for a specific scene class. For example, for the il-

ustrated image in Fig. 3 , the attention branch chooses where to

ocus on when classifying the scene as home office . The proposed

emantic cues include fluffy chair, computer and table, floor , etc. The

lassification branch, on the other hand, outputs { b i } that repre-

ent the probabilities of the scene image belonging to different

ategories according to the proposed semantic cues, e.g., the prob-

bility of the illustrated image captured in home office given the

Administrator
高亮
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emantic cue computer . The scene is inferred as home office only

hen the selected discriminative semantic cues in the attention

ranch are also decided as strong evidence for home office in the

lassification branch. 

The parallel branches structure in class-aware attentive pooling

s similar to that in [44,45] . However, the aim of our task is dif-

erent from theirs. Bilen and Vedaldi [44] aim to solve the weakly

upervised detection problem, where the multiple instance learn-

ng process is improved by using the parallel branches to select

egions. The region scores are utilized to infer the object detection

esults. Cui et al. [45] use the attention over attention structure

o improve the reading comprehension task. The motivation is to

xploit mutual information between the document and query. Our

ork, on the other hand, aims to use parallel branches for class-

ware attentive pooling, so as to further address the discriminative

emantic cues aggregation problem in indoor scene classification. 

.2.4. Optimization for IAP 

For average pooling and class-agnostic attentive pooling, the

ptimization goal is set as softmax loss (defined as the combina-

ion of the softmax operation and category cross entropy loss): 

L sof tmax = − 1 

N 

∑ 

n 

log 

(
exp (IAP ( x n ) y n ) ∑ C 
j=1 exp (IAP ( x n ) j ) 

)
(9) 

here N is the number of the training images and y n is the scene

lass label for the n th training image. 

For class-aware attentive pooling, the output logits are the com-

ination of probabilities. The logits in the output are not mutually

xclusive. In practice, if the category cross entropy loss is employed

o train the network, all the elements in the IAP ( x ) will be opti-

ized to be nearly 1. To overcome this problem in training, we

nstead use the binary cross entropy loss as follows: 

L cls = − 1 

N 

∑ 

n 

( 

C ∑ 

j=1 

1 ( y n � = j) log (1 − IAP ( x n ) j ) 

+ 

C ∑ 

j=1 

1 ( y n = j) log (IAP ( x n ) j ) 

) 

(10) 

here 1 (·) means the indicator function, which only equals 1

hen the condition in the parenthesis is satisfied. In the later sec-

ions, Eq. (10) is used as the classification training loss. 

.3. Cross-modality attentive pooling block 

For RGB-D indoor scene classification, another challenge is

ulti-modal fusion of RGB and Depth information. In the multi-

odal scenario, the indoor scene can be regarded as the abstract

f local semantic cues from both RGB and Depth modalities. Each

odality emphasizes different types of semantic cues. Based on

he above observations, the Cross-modality Attentive Pooling (CAP)

lock is constructed as illustrated in Fig. 4 . 

The CAP block is an extension of the IAP block for multi-modal

ocal semantic cues aggregation. The inputs of the CAP block are

GB local semantic cues { f r } and Depth local semantic cues { f d }

rom the RGB stream and Depth stream respectively. Both RGB and

epth streams in the CAP block have the same structure as that of

he IAP block in Fig. 3 (c). The aggregation of local discriminative

emantic cues in each modality has been learned in the IAP block

n the first learning stage. To further fuse the learned discrimina-

ive semantic cues across the two modalities, we propose an addi-

ional modality attention branch (where { fc 7 ( f 
r )} and { fc 7 ( f 

d )} flow

n illustrated in Fig. 4 ) in CAP block to learn the contributions of

GB and Depth modalities for each local semantic cue. All out-

uts from the penultimate fully connected layers in classification
ranches and attention branches in RGB and Depth streams are

oncatenated as the inputs { q i } of the modality attention branch.

he modality attention branch can be represented as: 

u i = h ( q i ) (11) 

z m 

i = 

exp ( u im 

) ∑ 

m ∈ r,d exp ( u im 

) 
(12) 

here h ( · ) is a linear transformation and m denotes the modality.

 i ∈ R 

2 . The z r 
i 

and z d 
i 

represent the importance of RGB and Depth

nformation for the i th local semantic cue respectively. z i = [ z r 
i 
, z d 

i 
] .

n practice, h ( · ) is constructed by two stacked fully connected lay-

rs, of which the output numbers are 256 and 2. The softmax op-

rator here is utilized to guarantee that for each semantic cue, the

um of attention weights for RGB and Depth modalities equals 1. 

The z r 
i 

and z d 
i 

are further utilized to guide the aggregation of se-

antic cues in the two modalities by fusing the attention branches

nd classification branches in the two streams. As illustrated in

ig. 4 , the outputs from the two branches in the two streams

an be denoted as { e r 
i 
}, { o 

r 
i 
} and { e d 

i 
}, { o 

d 
i 
} respectively. The cross-

odality attentive pooling can thus be represented as: 

a ∗ic = 

exp ( e r 
ic 

· z r 
i 
+ e d 

ic 
· z d 

i 
) ∑ L 

i =1 ( e 
r 
ic 

· z r 
i 
+ e d 

ic 
· z d 

i 
) 

(13) 

b ∗ic = 

exp ( o r 
ic 

· z r 
i 
+ o d 

ic 
· z d 

i 
) ∑ C 

c=1 ( o 
r 
ic 

· z r 
i 
+ o d 

ic 
· z d 

i 
) 

(14) 

CAP ( x r , x d ) = 

L ∑ 

i =1 

a ∗i � b 

∗
i (15)

here a ∗
i 

= [ a ∗
i 1 

, a ∗
i 2 

, . . . , a ∗
iC 

] , b 

∗
i 

= [ b ∗
i 1 

, b ∗
i 2 

, . . . , b ∗
iC 

] , CAP ( x r , x d ) ∈
 

C , and � means the element-wise multiplication. 

The attention weights z i are predicted based on a single pro-

osed region, which cannot guarantee the consistency with its spa-

ially neighboring proposed regions. Intuitively, if the RGB cues

ontribute more to one proposed region, people can infer that the

GB cues should also be attended more on its neighboring regions.

 smoothness constraint is then proposed to describe this relation-

hip. 

L smoothness = 

1 

NL 

N ∑ 

n =1 

L ∑ 

i =1 

∑ 

k ∈ K i 

1 

2 

(a ∗i y n · b ∗i y n ) 
2 
( z k − z i ) ( z k − z i ) 

T 
(16) 

here y n is the label of the n th training image, K i indicates the

eighboring proposed regions of the i th proposed region. We de-

ne the neighboring proposed regions as the regions that have at

east 0.6 Intersection over Union (IoU) with the given proposed

egion. The term (a ∗
i y n 

· b ∗
i y n 

) measures the importance of the i th

roposed region for correct classification. The more important is

he proposed region, the stricter constraints are for the neighbor-

ng regions of it. The reason is that the neighboring proposed re-

ions of the high-score proposed region are also more informative

or classification. In practice, constraining all the proposed regions

o be consistent is time-consuming. Instead, we only constrain

he proposed region with the highest score. The number of the

eighboring proposed regions are constrained to be at most 10.

he selection of the neighbors k is based on (a ∗
k y n 

· b ∗
k y n 

) , i.e., their

mportance to the classification. Neighbors with high importance

re selected preferentially. We find that this strategy is effective

nough in our experiments. 

The second-stage training of the proposed MAPNet is optimized

y the following function: 

L = L cls + βL smoothness (17) 

n the test phase, only the architecture constructed in the second

earning stage is used for inference. 
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Fig. 4. The MAPNet structure in the second learning stage. In Cross-modality Attentive Pooling (CAP) block, the attention weights across RGB and Depth modalities for each 

proposed region are learned to guide the aggregation of discriminative semantic cues across modalities. The parameters that flow through the red arrows are initialized with 

the weights learned in the first stage. The parameters that flow through the blue arrows are initialized from scratch. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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4. Experiments 

The proposed method is validated on two popular indoor RGB-

D scene classification datasets: SUN RGB-D Dataset [5] and NYU

Depth Dataset V2 [46] . 

4.1. Datasets 

The SUN RGB-D Dataset contains 10,355 RGB and Depth im-

age pairs captured from different cameras including Kinect v2, Re-

alSense, Kinect v1 and AsusXtion. We follow the experimental set-

tings in [5] . The categories including more than 80 images are used

as scene categories. 19 categories are kept for our experiments

with 4845 images for training and 4659 images for test. 

The NYU Depth Dataset V2 includes 1449 RGB and Depth image

pairs. To compare with other methods, we follow the experimen-

tal settings in [16] , in which the original 27 categories are further

gathered into 10 categories (including one “other” category). The

original training and test splits are kept, which results in 795 train-

ing images and 654 test images for 10 scene categories. 

4.2. Implementation details 

We implement the whole architecture in the popular frame-

work Caffe [47] . To fairly compare the results with others, the

AlexNet is used as the base architecture. We encode Depth im-

age into three-channel representation HHA (Horizontal Disparity,

Height above the ground, Angle of surface normal) [15] which has

been widely utilized and proven effective in RGB-D indoor scene

understanding [6,36,4 8,4 9] . The whole architecture is trained in

two stages. Stochastic Gradient Descent (SGD) and “step” policy

are used to train the framework in both stages. For each RGB-D

image pair, 300 region proposals are extracted. Since we use the

ROI pooling strategy, the input images can be in arbitrary sizes. In

our implementation, to keep more detailed semantic cues, the in-

put image pairs are resized based on the principle that the shorter

axis of the image is resized to 480 and the aspect ratio is kept.

For the SUN RGB-D Dataset, in the first stage, the weights are ini-

tialized using Places CNN and the batch size n , initial learning
0 
ate γ 0 , stepsize n s and max iterations N t are respectively set as

, 0.001, 20 0 0 0, 70,0 0 0 for both RGB and Depth modality. In the

econd stage, n 0 , γ 0 , n s and N t are set as 10, 0.0 0 01, 40 0 0, 10 0 0 0.

or the NYU Depth Dataset V2, since the number of samples is

ery small, following the training strategy in [6,50] , we initialize

he first stage’s network for RGB and depth with Places CNN fine-

uned on the corresponding modality of the SUN RGB-D Dataset.

he n 0 , γ 0 , n s and N t are set as 1, 0.0 0 01, 40 0 0, 10,0 0 0 in the

rst stage and they are modified as 10, 0.0 0 0 01, 40 0 0, 10,0 0 0 in

he second stage. The weights between the classification loss and

he smoothness loss β are set as 0.01 and 0.1 for the SUN RGB-D

ataset and the NYU Depth Dataset V2 respectively through cross

alidation. Both the SUN RGB-D Dataset and NYU Depth Dataset

2 have highly imbalanced number of images between classes. To

rain the network effectively for the class that have fewer images,

e use frequency weighted classification loss: 

L cls = − 1 

N 

∑ 

n 

w ( y n ) 

( 

C ∑ 

j=1 

1 ( y n � = j) log (1 − IAP ( x n ) j ) 

+ 

C ∑ 

j=1 

1 ( y n = j) log (IAP ( x n ) j ) 

) 

(18)

here w ( t ) is defined as: 

w (t) = 

N c _ max − N c _ min 

N t − N c _ min + δ

n which N t is the number of images of class t in the training set.

 _ min and c _ max represents the classes with the least and the

ost number of training images, respectively. δ is empirically set

s 0.01. 

.3. Results on SUN RGB-D dataset 

.3.1. Comparison with state-of-the-art methods 

We compare our final results with the state-of-the-art results

s shown in Table 1 . Our model achieves superior results com-

ared with other methods. For local features aggregation, Wang

t al. [35] , Liao et al. [51] and Zhu et al. [36] use the fully con-

ected layers, which cannot maintain the spatial invariance. Wang
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Table 1 

Performance comparison with the state-of-the-art methods on SUN RGB-D dataset. 

Methods Extra annotation Accuracy(%) 

(Wang et al. 2015 [35] ) No 26.5% 

(Liao et al. 2016 [51] ) Yes 41.3% 

(Zhu et al. 2016 [36] ) No 41.5% 

(Wang et al. 2016 [6] ) No 48.1% 

(Song et al. 2017 [48] ) No 52.4% 

(Song et al. 2017 [52] ) No 52.3% 

Local + OOR (Song et al. 2017 [50] ) Yes 50.3% 

MAPNet (ours) No 54.6 % 

Local + Global + OOR (Song et al. 2017 [50] ) Yes 54.0% 

MAPNet + Global(ours) No 56.2 % 
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Table 2 

Comparison of different pooling strategies in Intra- 

modality attentive pooling (IAP) block. 

Accuracy(%) RGB Depth 

Baseline 42.1% 38.9% 

Average pooling 40.1% 38.5% 

Class-agnostic attentive pooling 45.2% 40.0% 

Class-aware attentive pooling 46.0% 40.8% 
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t al. [6] share some common ideas with our work. They also

se region proposals to extract local semantic cues, however, they

ropose to use the FV to aggregate local information. It enhances

he discriminative power by regularizing the classifier weights of

he Gaussian Mixture Model components. Our model, on the other

and, learns the discriminative semantic cues in aggregation us-

ng the attention branch. The results confirm that our model can

earn the discriminative information better through the end-to-

nd optimization. Another work that shares similar idea with us

s Song et al. [50] . They propose to detect objects in the scene and

onstruct the object-to-object relations as semantic cues. Average

ooling then is employed to combine these local cues. Additional

bject bounding box annotations, which are costly to obtain, are

equired in [50] to learn to detect objects in the scene. Since the

bject classes in the scene are open-set, annotations for the ob-

ects in practice are also limited. We will show through visualiza-

ion that benefiting from the designed attention mechanism and

he end-to-end learning, the proposed MAPNet can latently dis-

over some object co-occurrence and object-to-object spatial rela-

ionships, without requiring extra object annotations. For RGB and

epth fusion, all the state-of-the-art methods concatenate the ag-

regated representation of RGB and Depth or build relationships

n aggregated feature level. The MAPNet first proposes to model

he relations between modalities for different RGB and Depth lo-

al semantic cues. With the proposed aggregation and multi-modal

usion model, our final test result on the SUN RGB-D Dataset

chieves 54.6% accuracy, outperforming all the state-of-the-art

ethods. 

To fairly compare with Song et al. [50] which combines both

he aggregated local features and global features for RGB-D indoor

cene classification, we also incorporate global information in our

odel. In practice, the global model we utilize is a two-stream

NN, each stream of which represents one modality and is also

onstructed based on the AlexNet model. The local model and the

lobal model are fused in the score level and trained in an end-to-

nd manner. The combined model can further achieve 56.2% accu-

acy. The obtained further improvement suggests the global model

an provide complementary global spatial layout information for

he MAPNet. 

The confusion matrix is illustrated in Fig. 5 . It shows the ground

ruth classes of most misclassified images are semantically similar

ith the inferred classes. For example, lecture theatre is liable to

e confused with classroom . Notice the accuracy of study space is

uch lower than other categories, for there are much less training

amples for study space . Other methods [6,36] that report results

n the SUN RGB-D Dataset also have lower performances on study

pace . 

.3.2. Comparison of different pooling strategies in IAP 

In Section 3.2 , three pooling strategies are proposed in Intra-

odality Attentive Pooling block for discriminative semantic cues

ggregation. Here, we quantitatively test their effectiveness. The
esults are shown in Table 2 . The baseline model uses Alexnet as

he backbone and is initialized with Places CNN in [26] . It can

e regarded as using the fully connected layer to aggregate local

nformation. The average pooling corresponds to the structure in

ig. 3 (a). As shown in Table 2 , it achieves lower performance than

he baseline model. The reason is that there are a lot of redun-

ant local semantic cues, some of which are disturbing for correct

lassification. The class-agnostic attentive pooling corresponds to the

tructure in Figure 3 (b). By adding the attention branch to discover

he discriminative semantic cues, the performance increases dra-

atically to 45.2% and 40.0% for RGB and Depth modalities respec-

ively. Finally, the class-aware attentive pooling corresponding to the

tructure in Fig. 3 (c), further improves the accuracy to 46.0% and

0.8% for RGB and Depth modalities attributed to the considera-

ions of class information in the attention branch. 

.3.3. Visualization for the intra-modality attentive pooling 

The deep learning models have been criticized for the lack of

nterpretability for a long time. One of the advantages of the pro-

osed attentive pooling method is that it can clearly illustrate the

ecision-making process for scene classification by utilizing the at-

ention weights to visualize the importance of the proposed re-

ions corresponding to local semantic cues. As an illustration, the

lass-aware attentive pooling in IAP block is employed in visualiza-

ion. Assume the evaluated image is inferred as class c , each pro-

osal’s score is calculated as a ic · b ic . The a ic and b ic are defined by

qs. (6) and (7) . In Fig. 6 , the top 3 most influential regions are

hown with different colors. The red bounding box represents the

ost influential region; the blue shows the least influential region

mong the top 3. The scores of the three regions are listed below

ach picture. 

In Fig. 6 , we can see the IAP can automatically discover the

ost informative semantic cues in different scales for indoor scene

lassification: 1) For the scenes with some highly discriminative

bjects, the IAP will highlight these discriminative objects in the

cene. For example, in bathroom , the toilet and sink are always as-

igned strong attention than other objects. It is worth noting that

he IAP can also find some discriminative objects that have rarely

een annotated in object detection datasets, such as the toilet pa-

er roll in bathroom . 2) For scenes that need co-occurrence cues

o be recognized, IAP assigns higher scores for highly discrimina-

ive regions within which multiple relevant objects occur together

han the regions only containing less discriminative individual ob-

ects within the regions. The typical example is that for library , the

egion containing both books and chairs gets higher scores than

he regions only containing books or chairs. The reason is that the

ooks and chairs alone can also be evidence for other scenes such

s bedroom and office . 3) For scenes that need object-to-object spa-

ial relations to be distinguished from each other, the IAP tends

o select regions within which discriminative spatial relations be-

ween objects exist. For example, for dining area and dining room ,

hey all consist of tables and chairs, but the spatial relations be-

ween tables and chairs are different in the two scenes. The dining

rea usually have multiple dining tables, and they are arranged in

ows, while the dining room only has one table and the chairs are

aid around the table. Notice the IAP does not explicitly learn the
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Fig. 5. The classification confusion matrix of MAPNet on the SUN RGB-D Dataset. The vertical axis shows the ground-truth classes. The classes in the horizontal axis are in 

the same order with that in the vertical axis. The horizontal axis shows the predicted classes. 

Table 3 

Ablation study for MAPNet on SUN RGB-D dataset. 

Methods Accuracy(%) 

Baseline RGB + D (Global) 48.3% 

IAP(class-aware) for RGB + D 53.7% 

CAP for RGB + D (classification loss only) 54.2% 

CAP for RGB + D (classification & smoothness loss) 54.6% 

CAP for RGB + D (classification loss only) + Global 55.5% 

CAP for RGB + D (classification & smoothness loss) + Global 56.2% 
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spatial relations of attentive objects to distinguish different scenes.

However, the regions highlighted by IAP show that the spatial re-

lations of objects might be encoded implicitly, which corresponds

to how human beings distinguish these scenes through spatial re-

lations. 

4.3.4. Comparison of different fusion strategies in MAPNet 

In the second learning stage, MAPNet learns to aggregate se-

mantic cues across multiple modalities. Different strategies are

compared and analyzed for multi-modal fusion in the second stage,

as shown in Tabel 3 . The Baseline RGB+D model utilizes two-stream

CNN that the stream of which fuses at the score level. The weights

in each stream are initialized with the fine-tuned Places CNN on

RGB and Depth modalities respectively. It achieves 48.3% accuracy,

which is already a high baseline compared with the state-of-the-

art methods in Table 1 . The IAP for RGB+D also utilizes two-stream

CNN, each of which is constructed with the IAP block as shown in

Fig. 3 . The pooling strategy employed in IAP is class-aware atten-

tive pooling. In the fusion of the two modalities, it adds e r , e d and

o 

r , o 

d for each proposed region respectively. The combined log-

its are then aggregated as that in the class-aware attentive pool-

ing strategy. It can achieve better performance compared with the

Baseline model, validating the effectiveness of the proposed IAP

block. However, the IAP for RGB+D still presumes the RGB and

Depth modalities have the same contribution. The proposed CAP

block further learns different contributions across modalities for
ifferent local semantic cues. The CAP for RGB-D (classification loss

nly) uses cross-modality attentive pooling block with only classi-

cation loss in Eq. (10) . It increases the performance to 54.2%. The

AP for RGB-D (classification & smoothness loss) , i.e., the final struc-

ure in the second stage of learning, shows the effectiveness of

he smoothness loss in Eq. (18) . The final performance for MAPNet

chieves 54.6% accuracy. Since the MAPNet classifies the indoor

cenes based only on the local semantic cues, the global model

an further provide complementary global spatial layout cues. The

lobal model boosts the accuracy by about 2% to 56.2%. 

.3.5. MAPNet-V for feature-level RGB-D fusion 

The proposed MAPNet in Fig. 4 fuses RGB and Depth modal-

ties at score-level since the class-aware attentive pooling needs

core-level information. We show in this section that the MAP-

et can also be extended for feature-level RGB-D fusion by ap-

lying some modifications. We denoted the modified MAPNet as

APNet-V. Following the same training strategy of MAPNet, the

APNet-V is also trained in two stages. In the first training stage,

e use the class-agnostic intra-modal attentive pooling as illus-

rated in Fig. 3 (b) for RGB and Depth streams respectively. In

he second training stage, we design the variant CAP (CAPv) block

ased on the class-agnostic intra-modal attentive pooling. In ac-

ordance with the original CAP block, the attention weights z r 
i 
, z d 

i 
an be obtained by Eqs. (11) and (12) . The formulation of the block

hen can be extended from Eq. (4) to: 

CAP v (x ) = f c 8 

( [ 

L ∑ 

i =1 

g r ( f 
r 
i ) ◦ a r∗i , 

L ∑ 

i =1 

g d ( f 
d 
i ) ◦ a d∗

i 

] ) 

(19)

here, 

a m ∗
i = 

exp ( a m 

i 
· z m 

i 
) ∑ L 

i =1 ( a 
m · z m ) 

, m ∈ { r, d} (20)
i i 
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Fig. 6. Visualization of the Intra-modality Attentive Pooling block (best viewed in color). Top 3 most influential regions for scene classification are annotated with red, 

yellow and blue bounding boxes respectively. The corresponding scores are shown in the histograms below them. It shows our model can latently discover different types of 

discriminative semantic cues such as objects (the first row), the co-occurrence between the objects (the second row) and the spatial relations among the objects (the third 

row). More detailed analysis can be found in Section 4.3.3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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w  

R  

R  

p  

t  

c  

D  

Table 4 

Ablation study for MAPNet-V on SUN RGB-D 

dataset. 

Methods Accuracy(%) 

Baseline RGB-D 48.3% 

IAP(class-agnostic) for RGB-D 52.3% 

MAPNet-V 53.1% 

a  
he g r ( · ), f r 
i 
, e r 

i 
and g d ( · ), f d 

i 
, e d 

i 
have the same meanings as those

n Eq. (4) for the RGB and Depth streams respectively. We only use

he classification loss in the second stage training for MAPNet-V. 

In Table 4 , we compare the MAPNet-V with other strategies

hich also combine RGB and Depth at feature level. The Baseline

GB-D is similar with Baseline RGB+D (Global) except for that the

GB and Depth streams are combined by concatenating the out-

uts from the penultimate fully connected layers in the second

raining stage. It shows that the Baseline RGB-D gets similar ac-

uracy with the Baseline RGB+D (Global) that combines RGB and

epth at score-level. The IAP(class-agnostic) for RGB-D uses class-

D  
gnostic attentive pooling in the first learning stage for RGB and

epth modality respectively. In the second learning stage, it di-
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Fig. 7. Visualization of the obtained contributions across modalities in the Cross-modality Attentive Pooling block (best viewed in color). The 5 highest scored proposed 

regions in each modality are shown with red, yellow, blue, green and pink bounding boxes respectively. The proposed regions are assigned high scores in RGB modality 

where there is strong color contrast, while the proposed regions get high scores in Depth modality where the shape cues are prominent. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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rectly concatenates the pooled features from penultimate fully con-

nected layers of RGB and Depth streams. It achieves 52.3% accu-

racy, which further validates the effectiveness of the IAP block.

By applying the MAPNet-V which uses the CAPv block instead

of directly concatenating features, the classification accuracy can

be further improved to 53.1%. Compared with the Baseline RGB-D

and IAP(class-agnostic) for RGB-D , it validates the effectiveness of

the proposed attention blocks (IAP and CAP) over direct feature

concatenation in feature-level RGB-D fusion scenario. Notice that

the MAPNet-V achieves about 1% less accuracy than the original

MAPNet(( CAP for RGB+D (classification loss only) in Table 3 )). One

possible reason is that we can only use the class-agnostic attentive

pooling which lacks the consideration of the class information in

attentive pooling as in MAPNet. 

4.3.6. Visualization of contributions across modalities 

The proposed model can help to explain and understand the

multi-modal fusion process. In CAP block, the scores z r 
i 

and z d 
i 

in

Eq. (12) represent the relative importance between the RGB and

Depth modalities for the i th proposed region. We visualize regions

that correspond to the 5 highest scores for RGB and Depth modal-

ities respectively in Fig. 7 . It shows that the model attends more

on RGB regions where strong color or texture cues exist such as

picture on the wall and pillow on sofa , while it attends more on

Depth regions where shape cues in objects are prominent and dis-
riminative, or the corresponding RGB regions are in dim environ-

ent such as legs of chairs and corner of table . The visualization

roves that the CAP block can automatically learn the importance

etween the RGB and Depth for different semantic cues. 

.3.7. Visualization of occlusion scenario 

In Fig. 8 we visualize the classification results from MAPNet in

ome occlusion scenarios. The occlusion here means some impor-

ant discriminative cues indicating scene categories, e.g., the bed

or the scene bedroom , are not presented or partially presented

ue to some occluisions or out of view. Assume the evaluated im-

ge is inferred as class c . The scores e r 
ic 
, e r 

ic 
in Eq. (13) and a ∗

ic 
· b ∗

ic 
n Eq. (15) represent importance of proposal i in RGB modality,

epth modality and combined RGB-D modalities when classifying

he image as class c respectively. We show the 5 highest scores

f e r 
ic 
, e r 

ic 
, a ∗

ic 
· b ∗

ic 
in Fig. 8 for each modality respectively. We can

ee that in the first row of Fig. 8 MAPNet can be robust in dis-

overing occluded discriminative cues ( bed and row of chairs ). This

s because that we use region proposals as our local cues. Even if

he object is occluded, the part of the object can be extracted as

ocal cues with region proposals. We can also find that as illus-

rated in the first image of Fig. 8 , for the dim occluded scenario,

he Depth modality can provide strong cues that help to overcome

he heavy occlusion. When the most discriminative cues ( bed and

oilet ) are occluded heavily, MAPNet also cannot assign them with
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Fig. 8. Visualization of the occlusion scenarios. The occlusion here means some important discriminative cues indicating scene categories, e.g., the bed for the scene of 

bedroom are not presented or partially presented. For each image we show the 5 highest scored proposed regions from RGB modality, Depth modality and fused RGB-D 

modalities respectively. The 5 highest scored proposed regions are shown with red, yellow, blue, green and pink bounding boxes respectively. In the first two rows, we show 

some examples that MAPNet classifies correctly. In the last row, we show some examples that MAPNet classifies wrong.( bathroom and conference room are recognized as 

bedroom ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. The classification confusion matrix of MAPNet on the NYU Depth Dataset V2. The vertical axis shows the ground-truth classes. The classes in the horizontal axis are 

in the same order with those in the vertical axis. The horizontal axis shows the predicted classes. 

h  

N  

c  

W  

s  

t  

b

4

 

D  

M  

f  

O  
igh score as shown in the second row of Fig. 8 . However, MAP-

et can still correctly classify the scene by using other contextual

ues, for example curtain in the bedroom and sink in the bathroom .

hen other cues are not discriminative, MAPNet will fail to clas-

ify the occluded scenario correctly. As shown in the third row of

he Fig. 8 , the bathroom and the conference room are classified as
edroom . 
.4. Results on NYU depth dataset V2 

Table 5 shows the performance comparison on NYU Depth

ataset V2 with other state-of-the-art methods. The proposed

APNet alone outperforms most of the existing methods except

or the Local + Global + OOR in [50] . However, Local + Global +

OR in [50] uses both aggregated local information and global in-
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Table 5 

Performance comparison with the state-of-the-art methods on NYU Depth dataset 

V2. 

Methods Extra annotation Accuracy(%) 

(Gupta et al. 2013 [16] ) No 45.4% 

(Wang et al. 2016 [6] ) No 63.9% 

(Song et al. 2017 [48] ) No 65.8% 

(Song et al. 2017 [52] ) No 66.7% 

Local + OOR (Song et al. 2017 [50] ) Yes 60.1% 

MAPNet (ours) No 66.8 % 

Local + Global + OOR (Song et al. 2017 [50] ) Yes 66.9% 

MAPNet + Global(ours) No 67.7 % 

Table 6 

Ablation study for MAPNet on NYU Depth dataset V2. 

Methods Accuracy(%) 

Baseline RGB + D (Global) 60.6% 

IAP(class-aware) for RGB + D 65.8% 

CAP for RGB + D (classification loss only) 66.2% 

CAP for RGB + D (classification & smoothness loss) 66.8% 

CAP for RGB + D (classification loss only) + Global 66.5% 

CAP for RGB + D (classification & smoothness loss) + Global 67.7% 
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formation for classification. When compared with Local + OOR in

[50] that also only use local cues, our MAPNet achieves superior

results with a large margin with no extra annotations. To fairly

compare with the Local + Global + OOR model in [50] , the global

model is also combined with MAPNet. The performance further

boosts to 67.7%, showing the advantage over [50] . The confusion

matrix of our final test results on the NYU Depth Dataset V2 is

shown in Fig. 9 . 

Table 6 shows the ablation study of MAPNet on the NYU Depth

Dataset V2. Consistent conclusions can be obtained as those on

the SUN RGB-D Dataset. One observation in our experiments is

that the smoothness constraint plays a more important role on the

NYU Depth Dataset V2. One possible reason we speculate is that

the number of images in the NYU Depth Dataset V2 is smaller,

the smoothness regularization is more important for small-scale

datasets to learn the consistent cross-modal attention. 

5. Conclusions 

In this paper, we have proposed the Multi-modal Attentive

Pooling Network (MAPNet) to aggregate discriminative semantic

cues in RGB and Depth modalities for RGB-D indoor scene clas-

sification. Unlike other methods aggregating the semantic cues in

scene images using Fisher vector (FV) or fully connected layer,

the Intra-modality Attentive Pooling (IAP) block is proposed to se-

lect and aggregate discriminative semantic cues meanwhile main-

tain the spatial invariance in each modality. To exploit the com-

plementary information fully in fusing the selected discriminative

cues across the two modalities, we argue that the RGB and Depth

should provide different contributions on different semantic cues

for RGB-D indoor scene classification. The Cross-modality Attentive

Pooling (CAP) block is thus proposed to learn the modality atten-

tion weights which are further employed to pool the discriminative

local cues of each modality. We achieve the state-of-the-art results

for RGB-D indoor scene classification on both SUN RGB-D Dataset

and NYU Depth Dataset V2, which validates the effectiveness of the

proposed framework. 

One direction of future work is to explore the relations between

various semantic cues. The relations can help represent scene im-

ages and discover new semantic cues. Another future work is to
mbed the region proposal process with the MAPNet learning. The

ighlighted semantic cues can be further utilized to generate more

eliable region proposals. 
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