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Abstract—Intelligent video surveillance (IVS) is always an interesting research topic to utilize visual analysis algorithms for exploring
richly structured information from big surveillance data. However, existing IVS systems either struggle to utilize computing resources
adequately to improve the efficiency of large-scale video analysis, or present a customized system for specific video analytic functions.
It still lacks of a comprehensive computing architecture to enhance efficiency, extensibility and flexibility of IVS system. Moreover, it is
also an open problem to study the effect of the combinations of multiple vision modules on the final performance of end applications of
IVS system. Motivated by these challenges, we develop an Intelligent Scene Exploration and Evaluation (ISEE) platform based on a
heterogeneous CPU-GPU cluster and some distributed computing tools, where Spark Streaming serves as the computing engine for
efficient large-scale video processing and Kafka is adopted as a middle-ware message center to decouple different analysis modules
flexibly. To validate the efficiency of the ISEE and study the evaluation problem on composable systems, we instantiate the ISEE for an
end application on person retrieval with three visual analysis modules, including pedestrian detection with tracking, attribute recognition
and re-identification. Extensive experiments are performed on a large-scale surveillance video dataset involving 25 camera scenes,
totally 587 hours 720p synchronous videos, where a two-stage question-answering procedure is proposed to measure the performance
of execution pipelines composed of multiple visual analysis algorithms based on millions of attribute-based and relationship-based
queries. The case study of system-level evaluations may inspire researchers to improve visual analysis algorithms and combining
strategies from the view of a scalable and composable system in the future.

Index Terms—Intelligent Surveillance System, Big Visual Data, Distributed System and Parallel Computing.
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1 INTRODUCTION

R ECENT years, more and more video surveillance devices
are deployed as the increasing demands on public se-

curity and smart city. By the year 2010, more than 10 million
monitoring cameras have been equipped for surveillance
systems in China alone [1]. With such huge number of
cameras, surveillance video has become the largest source
of Big Data [2]. To alleviate the labor intensive task of moni-
toring surveillance regions as well as explore richly valuable
information from the big surveillance data, researchers seek
the advanced computer vision algorithms to develop intelli-
gent video surveillance (IVS), where the raw non-structured
video can be parsed into meaningful structured information,
e.g., object categories, attributes, activities, automatically. As
introduced in [2] and [3], it is always an active research
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area for developing an IVS system to explore big video data
efficiently, flexibly and accurately.

The research of IVS grows up from the beginning of
this century. One of classical work “W4” [4] describes the
main research issues of IVS, i.e., developing IVS system
to answer the W4 problems, i.e., Who, When, Where and
What, in virtue of visual analysis algorithms. As the core
component of IVS system, visual analysis towards video
surveillance has been an important research issue in com-
puter vision community. In past decades, many prominent
vision algorithms have been proposed, ranging from low-
level background modeling, object detection [5], [6], [7],
[8] to middle-level target tracking [9], [10], [11], trajectory
analysis [12], [13], [14] and high-level activity recognition
[15], [16], [17]. Most researches focus on a single vision
task using specific data preprocessed from raw video data
to validate the effectiveness of proposed algorithms. A few
work on IVS system, such as IBM S3 system [18], has also
been developed with the main purpose for processing large-
scale video data from multi-cameras network, where several
individual analysis functions with simple combinations of
algorithms are presented for demonstration.

Currently, the deep learning based models have
achieved breakthrough in many single vision tasks, e.g.,
image classification, object detection and image captioning.
However, just as the review in [19], todays AI systems
are monolithic which makes them hard to develop, test,
and evolve. Thus, it is essential to build a composable IVS
system with flexible modular execution as well as large scale
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computing capabilities. In summary, there are mainly three
challenging issues to be concerned for a composable IVS
system, i.e., efficiency, extensibility, and evaluation, termed as
“E3” in abbreviation.

• Efficiency: To process the huge amount of surveillance
videos efficiently, researchers developed various dis-
tributed computing architectures based on Message
Passing Interface (MPI) [20], or open-source dis-
tributed architectures [21], [22] or cloud computing
strategies [23], [24], [25]. Meanwhile, since the depen-
dencies in different vision modules, how to schedule
different analysis tasks with appropriate computing
resources is very important for an efficient IVS sys-
tem. However, most solutions utilized a simple fixed
scheduling strategy, i.e., assigning specific tasks to
fixed worker nodes, which will result in the wasting
of computing resources.

• Extensibility: The demand for extensibility denotes
the IVS system can implement different visual analy-
sis modules conveniently. On one hand, a new vision
module should be easily embedded into current sys-
tem. On the other hand, for existing vision algorithm-
s, the execution pipelines indicating the execution
order of multiple vision modules should be mod-
ified flexibly. However, many current IVS systems
are heavily customized for specific applications. It is
difficult to add new analysis modules or to update
the existing ones. Thus, how to construct a platform
with good extensibility and flexibility is still a big
challenging problem.

• Evaluation: In a composable IVS system, there are
a number of visual analysis modules. Some are
general analysis modules, such as motion detection,
object recognition, tracking, and some are higher-
level analysis modules for specific applications, e.g.,
people counting, activity recognition etc. Thus, the
final performance of an end application depends
on all vision algorithms in the execution pipeline.
However, vision algorithms at different levels are
often studied independently with self input-output
definitions, train/test dataset and evaluation metrics.
In an integration system, some vision algorithms
with superior performance on single-task datasets
may not be the optimal choice as a component in
a whole system [26].

To alleviate the three challenges, an Intelligent Scene
Exploration and Evaluation (ISEE) platform is proposed
in this paper. It aims at meeting the needs for parsing
large-scale surveillance video data with multiple kinds of
computer vision algorithms efficiently and flexibly. Based
on these parsing results, a unified system evaluation can be
performed, such that different system pipelines and vision
algorithms can be evaluated at system level effectively and
consistently. An overview of the goal of ISEE is illustrated
in Fig. 1. Here, toward a specific end application on person
retrieval, we instantiate the ISEE with three visual analysis
algorithms, i.e., pedestrian detection with tracking, attribute
recognition and re-identification (ReID). We adopt open-
source distributed framework, including, Hadoop Yarn [27]
and Spark Streaming [28], and Apache Kafka [29] to con-

Fig. 1. An illustration of the goal of ISEE platform. The large-scale
surveillance video data is parsed by a specific execution pipeline effi-
ciently, where the meta data is organized by a semantic graph including
visual entities and various relationships. Subsequently, an end applica-
tion on person retrieval is conducted based on the semantic graph to
evaluate the performance of current parsing pipeline.

struct the underlying computing architecture of ISEE plat-
form. Then, the Neo4j [30] graph database is adopted for
organizing all parsing results. By performing person query
in the graph database, the system evaluation is performed.

In summary, the contributions of this paper include:

• A distributed computing platform ISEE is developed
for parsing big surveillance video data, where Spark
Streaming is adopted for processing large-scale video
efficiently and multiple visual analysis tasks are
scheduled by Hadoop Yarn for allocating comput-
ing resources automatically. Based on the proposed
computing and scheduling strategies, the execution
efficiency of computing resources can be improved
significantly, compared to traditional IVS system.

• The middle-ware message center is designed to use
in ISEE platform based on Apache Kafka. It decou-
ples different analysis modules in the platform so
that it is possible to add or replace new algorithms
conveniently. Furthermore, the execution order of
multiple analysis modules can be specified by user
with a form of flow graph in User Interface (UI). The
design of middle-ware message center and the flow
graph based execution pipeline enhance the extensi-
bility and flexibility of IVS system significantly.

• Toward an end application in video surveillance, i.e.,
person retrieval, we instantiate the ISEE with three
visual analysis modules, i.e., pedestrian detection
with tracking, attribute recognition and ReID. Based
on a richly annotated pedestrian (RAP) dataset [31]
and large-scale raw HD videos, we perform exten-
sive end-to-end system evaluations from both the ef-
ficiency and the performance of person retrieval with
different vision algorithms and execution pipelines.
This case study on system-level evaluations may
inspire researchers to improve visual analysis algo-
rithms and combining strategies from the view of a
scalable and composable system in the future.
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The remainder of this paper is organized as follows:
Section 2 describes related work on large-scale IVS systems.
Section 3 presents the proposed ISEE platform in details. As
a case study of the ISEE, i.e., the task of person retrieval,
the implementation setting up and video datasets are intro-
duced in Section 4. Section 5 shows the experimental results.
Finally, we conclude this work in Section 6.

2 RELATED WORK

Early IVS systems, e.g., Pfinder [32], Advisor [33] and Vs-
star [34] etc., paid little attentions on the design of scalable
computing architecture for large-scale video processing. S-
ince our work aims to construct an efficient and extensional
IVS system based on distributed architectures, and further
perform system-level evaluation, the related work can be
divided into two parts. One is distributed architectures for
IVS, the other is IVS system evaluations.

2.1 Distributed architectures for IVS
As one pioneer in IVS, Video Surveillance and Monitoring
(VSAM) [35] system proposed a series of design concepts,
e.g., scalability, modularization and reusability, which are
still important for modern IVS systems. As a real IVS
system deploying for large-scale applications, IBM Smart
Surveillance System (S3) [18] is an excellent representative
in early years, who adopted distributed processing archi-
tectures to handle large-scale video data, and proposed the
design patterns of middle-ware and plugin to support the
resources sharing and meta-data management. However,
these early systems usually adopt a fixed scheduling strat-
egy where a specific analysis task is assigned to one or
more fixed machines, so that it is difficult to meet the needs
for processing big video data efficiently. Nowadays, as the
increasing developments of technologies of Big Data, many
IVS systems are built based on parallel programming model
and cloud computing platform.

2.1.1 Parallel Programming Models Based Systems
Message Passing Interface (MPI) [36], Hadoop MapReduce
[37] and Spark [38] are the three most popular parallel
programming models used in the systems of large-scale
image/video processing.

MPI is a communication protocol for programming par-
allel computers [36]. It provides rich interfaces which are
used to data exchanging among different task nodes. The
functions of data synchronization, sending and receiving
among parallel tasks are also completed through calling
these interfaces. Mubasher et al., [20] proposed a system
using MPI to detect video changes based on Gaussian
Mixture Model (GMM). Qi et al., [39] constructed a MPI
based Visual Turing Test (VTT) system, where 93.5 hours
surveillance videos are analyzed with 8 analysis modules.
One of the advantages of MPI is its flexibility that no
intermediate file generates during processing. However, as
a programming model for communication, it requires high
network bandwidth among computing nodes. As another
drawback, MPI lacks of fault-tolerant mechanism, which is
very important for Big Data processing.

Hadoop MapReduce is a programming model proposed
by Google [37], which is an associated implementation for

processing and generating big data sets in parallel. In recent
years, more and more systems for video analysis are built
based on Hadoop MapReduce architecture due to its ad-
vantages of easy deployment and fault-tolerance. Tan et al.
[21] proposed a system for distributed video analysis, where
two independent algorithms, i.e., face detection and motion
detection and tracking, are tested on the system. Zhao et al.,
[40] provided a framework to extend Hadoop MapReduce
to support video analytic applications, where the interfaces
of a series of common video analysis algorithms were
designed for using with Hadoop MapReduce easily. Two
applications of image dehazing and object detection and
tracking are tested under their framework. G. Li et al., [41]
also constructed a system based on Hadoop MapReduce for
large visual traffic data analysis. Although Hadoop MapRe-
duce based systems achieve scalability and good efficiency
to some extents, the huge intermediate files generated in one
execution pipeline must be stored in Hadoop Distributed
File System (HDFS) [42] for subsequent processing. The
frequent I/O operations will greatly hinder the system from
further improvement of efficiency.

Besides Hadoop MapReduce, Spark [38] is another pop-
ular MapReduce-like distributed computing architecture. It
has almost all the merits of Hadoop MapReduce, due to
its nature of MapReduce programming model. Moreover,
benefiting from the advantage of in-memory computing,
the frequency of I/O operations of Spark will be decreased
significantly. For the tasks of video analysis, Yang et al. [22]
proposed to use Spark for video action detection and near-
duplicate video retrieval. Similarly, Wang et al. [43] devel-
oped a Spark based system for action recognition in large-
scale offline videos. Compared to Hadoop MapReduce, the
speeds of offline video processing in above work have
been improved significantly using Spark. While for realtime
video processing in IVS system, Spark Streaming [28] which
divides a streaming computing into several mini-batch tasks
has received more attentions due to its high throughput,
real time and fault tolerance. In [44] and [45], researchers
proposed to develop IVS systems for realtime video pro-
cessing based on Spark Streaming and Kafka, yet only some
primary experimental results were presented with the lacks
of necessary analysis on efficiency and scalability.

Different from previous work, some researchers de-
signed specific underlying parallel mechanism for large-
scale image/video processing. Antonio et al. [3] proposed
a scalable and flexible IVS system to separate analysis
modules from underlying computing architecture, so that
the execution pipelines can be performed with different
analysis modules flexibly. However, the system can be only
deployed to a single machine, but cannot scale to clusters.
Scanner [46], is another system for productive and efficient
big video data analysis. In Scanner, the source video data,
intermediate outputs and processing results are stored into
database as relational tables. It provides mechanisms to
access data from database efficiently and flexibly in execu-
tion pipelines. Moreover, it also support to easily distribute
them to heterogeneous computing resources, i.e., CPUs,
GPUs and media processing ASICs. However, Scanner only
supports to pre-defined sequential execution pipeline but
not complex Directed Acyclic Graphs (DAGs). It may limit
its flexibility and extensibility in complex video analysis
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applications. As an improved version of Scanner, tScanner
[47] is able to build complex DAGs through replacing the
scheduler with a Tensorflow [48] graph generator. Although
these above systems achieved scalability, extensibility and
good performance in experiments, we prefer to construct
the ISEE platform based on MapReduce or Spark whose
stability, fault-tolerance and efficiency have been validated
in different applications.

2.1.2 Cloud Computing Based Systems
Besides the popular distributed programming models, a
number of researchers also constructed large-scale IVS sys-
tems based on some cloud computing infrastructures devel-
oped by several IT companies, such as the system based
on Amazon EC2 for spatio-temporal analysis on large-
scale camera networks [23], the system Optasia based on
Microsoft Cosmos for large-scale video analytic [25], the
system based on Google cloud [24] and the system [49]
constructed by OpenStack [50], and so on.

The most advantage of IVS systems based on cloud
computing is that the developers of IVS systems need only
focus on developing vision algorithms and designing exe-
cution pipelines but not considering the underlying parallel
computing strategies, so that the developing difficulties and
development cycle can be reduced greatly. Take Optasia
[25] as an example, it allows users to develop analysis
modules under provided interfaces and then submit them
to system to be implemented in parallel, where the degree of
parallelism is adjusted automatically in terms of the amount
of data need to be processed. Moreover for the multiple
queries at one time, the system will merge the overlapping
processes to further improve the query efficiency. However,
such systems based on cloud computing heavily depend on
specific cloud platforms with the lack of flexibility and extra
costs for cloud services.

2.2 IVS System Evaluation

Most work in above focused on designing and developing
distributed architecture to promote the capabilities of IVS
systems for large-scale video processing, e.g., efficiency,
extensibility or scalability. Only a few researchers studied
the evaluations of IVS systems integrating multiple visual
analysis algorithms. Venetianer and Deng [51] discussed
some challenges involved in IVS system evaluation, e.g.,
environment factors, metrics, and ground-truth, and pro-
vided a fuzzy ground-truth based evaluation approach for
both system-level and component-level evaluation. Howev-
er, this work only showed a conceptual framework without
practical test for a real IVS system.

Recently, Qi et. al., [39] developed an IVS system with
the end application of restricted visual Turing test (VTT),
which provides a good example for system-level evaluation
to test the overall performance of system to understand
long-term and wide-area surveillance scenes. The system
consists of multiple video parsing modules, a query engine,
a knowledge base and a Q/A evaluation server, where
93.5 hours videos captured in four different locations are
analyzed by a cluster with ten workstations. They annotated
3,426 story-line queries to evaluate the performance of sys-
tem. However, the computing infrastructure of the system

depends on MPI programming without efficient scheduling
for multiple analysis tasks.

As another application, person search first proposed by
Xu et al. [52], is to study the combination of pedestrian
detection and person re-identification as an end-to-end sys-
tem. Recently, the performance of person search in [26] and
[53] can validate the importance of system-level evaluation,
rather than the evaluations at level of individual vision
algorithm. However, existing work still lacks of large-scale
tests with wild surveillance data. In [26], the total length of
data videos including 6 cameras scenes is only 10 hours.

3 ARCHITECTURE OF ISEE PLATFORM

3.1 Overview
The architecture of ISEE platform is shown in Fig. 2, where
the ISEE platform consists of the following parts:

Control Center: Control center is responsible for loading
initial system configuration and launching all the kernel
modules and analysis modules specified by users. For all
analysis modules, control center will calculate the necessary
size of physical computing resources and set running pa-
rameters respectively. In addition, control center is also used
to monitor the heartbeat messages of system.

Message Center: Message center is responsible for send-
ing, receiving and caching messages of different system
modules. Specially, in ISEE, it acts as middle-ware to de-
couple system modules from each other, so that the visual
analysis modules in an execution pipeline do not depend on
their antecedent modules directly. Thus, the usage of mes-
sage center permits users to construct extensible pipelines,
in which the analysis modules can be replaced, removed and
added flexibly. Moreover, the message center also enhances
the fault-tolerance of IVS system.

Analysis Modules: To realize a specific application, differ-
ent analysis modules are organized to a pipeline. Multiple
instances of a pipeline will be implemented in parallel on
ISEE platform. Each module should define the interface
to call a specific algorithm and the interface to message
center. Different vision algorithms are embedded into anal-
ysis modules as plugins, so that the flexibility is further
improved. Currently, for the end application of person
retrieval, three analysis modules of pedestrian detection
with tracking, attribute recognition and re-identification are
integrated into ISEE platform.

Data storage: Two kinds of data storage models are adopt-
ed in ISEE platform, i.e., HDFS and Graph Database. The
meta-data generated by analysis modules will be inserted
into HDFS or Graph Database in terms of data type. Con-
sidering the stability and fault-tolerance, but high latency
of HDFS, the data with larger volume are stored in it, such
as raw video data, image data in the bounding boxes of
tracklets, etc. While the parsing results of interesting objects
(tracklets coordinates, attributes, etc.) are inserted into Neo4j
database. Finally the graph database recording the parsing
results will support further queries by end users and system
evaluations.

Search Server & Web UI: The component is responsible
for the interactions between end users and ISEE system. On
one hand, users can define the execution pipelines (select
analysis modules and the execution logical order) of IVS



5

Fig. 2. Architecture of ISEE platform. It mainly includes five parts. And details of each part are presented in the text.

system. On the other hand, it receives the query conditions
that users specified and feedback the retrieval results from
graph database.

To construct ISEE platform for large-scale video pro-
cessing, a set of advanced big data tools are adopted, e.g.,
Apache Hadoop YARN [27], Spark [38], [28], Apache Kafka
[29], Apache HDFS [42], Neo4j graph database [30]. The
functions of these tools are listed in Table 1. The detailed
mechanisms are explained in the following.

TABLE 1
The Big Data Tools Used in ISEE Platform and Their Functions.

Tools Functions

Hadoop Yarn To schedule the computing resources and tasks.

Spark Distributed computing engine.

Kafka
To realize the message center. (It is a distributed
message consuming and producing system.)

HDFS
To store the data with the requirement on high stability
but not low latency (e.g., source video data, frame data
of trajectories).

Neo4j
To store the meta-data e.g., pedestrian trajectories,
attributes, ReID features, and relationships.

3.2 Computing And Communication
The computing and communication are the core compo-
nents in an IVS system. Here, Spark Streaming and Kafka
are used as the underlying infrastructures of computing and
communication components in ISEE, respectively.

As the computing engine of ISEE, Spark Streaming
utilizes Spark’s fast scheduling capability for large-scale
video processing. When a computing application based on
Spark Streaming is submitted, it will process input data in
batch-grain, where the real-time data stream will be divided
into a series of RDDs (Resilient Distributed Datasets) [54]
termed Discredited Stream (DStream). If there is not any
data need to be processed, the application keeps running in
idle state until the users/system halt it. In ISEE platform,
all visual analysis modules and two auxiliary modules, i.e.,
MessageHandling for communication and DataManaging
for data storage (shown in Fig. 2), are the applications based
on Spark Streaming.

As the message center of ISEE, Kafka is chosen for
transmitting intermediate data among different applications
of Spark Streaming. The work flow between Kafka and
Spark Streaming is shown in Fig. 3, where each application
in Spark Streaming consumes the messages with specified
topics from Kafka. For a continuous stream input, the size of
RDDs depends on the length of time window (∆t) for data
collection. Each RDD will be scheduled as multiple parti-
tions for implementing in parallel, where Spark Streaming
consumes it from Kafka with a tiny time window. Thus, the
number of partitions determines the degree of parallelism.

Fig. 3. Flow diagram of data processing with Kafka and Spark Stream-
ing. The data in Kafka is divided into several partitions.

3.3 Task Scheduling And Task Flow

In ISEE, multiple kinds of video analysis tasks submitted
by different users can be implemented concurrently, where
each task can be further decomposed into a number of
implementations of visual analysis modules. Here, Hadoop
Yarn is adopted for scheduling tasks with available com-
puting resources. When an application (App.) of Spark
Streaming is submitted to Yarn, Yarn allocates computing
resources, controls the creation/destruction and monitors
the runtime status of each worker node for the App. The
App. is an instantiation of certain visual analysis module
for ISEE implementation. Thus, each task is scheduled by
Yarn automatically, which increases the efficiency of ISEE.

For multiple tasks of ISEE, the implementation pipeline
of vision modules, termed Execution Plan, can be specified
by users’ definitions through Web UI. Thus, each task of
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Fig. 4. The task flow in ISEE platform. The class TaskData defines the
tasks flow among different modules. It mainly consists of Execution Plan
(a.k.a, DAG), Predecessor Result Data and Destination Ports.

ISEE corresponds to an execution plan represented by a Di-
rected Acyclic Graph (DAG). To distinguish different tasks
concurrently executed by ISEE, the execution state of each
task as well as the intermediate data is attached to the data
messages in Kafka, termed as TaskData. Concretely, TaskData
consists of the DAG of Execution Plan, Predecessor Result Data
and Destination Ports, where Destination Ports indicates the
next Apps of the message to be sent for further processing.
As one App. receives the TaskData from Kafka’s message
queue with specified topic, it verifies the Destination Ports
with the Port in itself that is pre-defined in creation of App.
If the Port belongs to Destination Ports, the App. processes
this data. After the execution of this vision module, the
output result is bounded with the updated state of execution
plan to form a new TaskData where the Destination Ports is
updated by the next nodes in the execution plan DAG. The
new TaskData is sent to Kafka for the subsequent processing.
The process is illustrated in Fig. 4.

3.4 Encapsulation of Visual Analysis Algorithms

ISEE is developed by Java and Scala, while most computer
vision models are developed by C/C++. Moreover, there
are two kinds of analysis models deployed by ISEE using
different computing hardware, i.e., deep learning model-
s based on GPU implementation and traditional analysis
models based on CPU implementation.

Here, we encapsulate the visual analysis algorithms into
a class of analysis modules written by Java which define the
methods to interact with underlying architecture (e.g., Mes-
sage Center, Control Center, etc.), as shown in Fig. 5(a). The
Java Native Interfaces (JNIs) are defined inside the analysis
modules, which determine the interface to vision algorithms
in C/C++. Then the codes in C/C++ are packaged into
dynamic link libraries (DLLs) based on the predefined JNIs.
Fig. 5(b) shows an example to encapsulate the algorithm
of MSCANFeatureExtraction into the corresponding module
in ISEE as a plugin. With such methods, the inside visual
analysis algorithm can be replaced easily without the need
for considering the underlying architecture in ISEE.

(a)

(b)

Fig. 5. Method for algorithms embedding. (a) An overview for algorithms
embedding using JNI. (b) An example (the module for ReID feature
extraction) shows the definitions of interfaces.

3.5 Meta-Data Management

A flexible and extensible management of multiple kinds
of meta-data (analysis results) generated by different visu-
al analysis modules is also very important for providing
friendly and efficient experience of interactions with end
users. In ISEE, we adopt Neo4j Graph Database to organize
the meta-data obtained from large-scale videos into a huge
graph for information retrieval and system evaluation.

Firstly, we construct a space-time tree to organize all
visual objects detected at different time and surveillance
scenes, in which the Year, Month, Day, Hour and Minute
are as the temporal nodes organized hierarchically. Mean-
while, different surveillance cameras are represented as
spatial nodes. An example of space-time tree is shown in
Fig. 6. Then, the detected visual objects are inserted to the
corresponding space-time nodes. For each visual object, its
visual attributes recognized by vision modules are saved as

Fig. 6. Meta-Data management using Graph Database. It consists of
spatio-temporal entities, visual entities, and the corresponding relation-
ships. The spatio-temporal nodes compose of a tree-like structure to
organize the detected visual entities with part or context relationships.
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various properties of the corresponding node. Subsequently,
the similarity relationships between different objects are
added by the edges between nodes, which may be obtained
by the vision module of pedestrian ReID. The graph-based
representation provides an intuitive and unified approach
to organizing visual entities (nodes), attributes (proper-
ties), similarity relationships and spatial-temporal context
relationships (edges) detected by multiple vision modules.
Meanwhile, Neo4j supports efficient queries on interesting
nodes and edges for large graphs.

4 AN END APPLICATION: PERSON RETRIEVAL

As an end application in video surveillance, Person Retrieval
is performed in this work to test the efficiency of ISEE
for processing large-scale surveillance videos and present
a case study of system-level evaluations on different ex-
ecution pipelines, where two kinds of queries including
attribute-based query (AQ) and relationship-based query
(RQ), relating to three kinds of vision algorithms, i.e., pedes-
trian detection with tracking, attribute recognition, and re-
identification, are tested on HD videos with duration of over
400 hours. The details on the dataset, querying types, vision
algorithms and evaluation metrics are described as follows.

4.1 Dataset
The richly annotated pedestrian (RAP) dataset [31] is adopt-
ed to demonstrate the ISEE platform, which is collected
from the wild indoor surveillance video data (720p) which
covers 25 scenes and 587 hours. For training and test of
various algorithms on attribute recognition, totally 84,928
pedestrian image samples are annotated manually with 72
visual attributes as well as the spatio-temporal positions.
Furthermore, a subset of the RAP including 26,638 image
samples is annotated with 2,589 person IDs which are visible
in at least two camera views. The details on the RAP dataset
can be found in [31].

To evaluate the efficiency for large-scale video analytics,
different amounts of raw videos with the durations of 10h,
50h, 100h, 200h and 410h are feed to ISEE platform under
different execution pipelines and computing resources. To
measure the system-level performance on person retrieval,
a set of video files with total duration of 275 hours are se-
lected, where 17,227 person samples in the RAP are adopted
to form querying conditions in AQs and RQs.

Here, as the input of ISEE, raw continuous videos are
split into an amount of video files with the size of 64M
(around 10 minutes) per file saved in HDFS.

4.2 Queries
Inspired by the restricted Visual Turing Test (VTT) in [55]
[39], we adopt a question-answering (QA) paradigm to
test the performance of person retrieval. Here, two kinds
of queries on person retrieval are designed. One is the
attribute-based query (AQ) which queries whether a person
with specific attributes existing in a specific spatio-temporal
region or not. The other is relationship-based query (RQ)
to check whether two person images belong to the same
person ID or not. By retrieving from the parsing results in
the graph database, an answer with binary values “Yes” or
“No” is returned.

Fig. 7. Examples of the question-answering paradigm in person retrieval.
The definition stage is to confirm the given bounding boxes to be
persons or not. If the answer is “Yes” and correct, subsequent attribute
or relationship queries will be performed.

For both kinds of queries, each query is executed with
two stages:

• The definition stage determines whether a person or
a pair of persons existing in specific sptio-temporal
regions (bounding boxes in certain frame) or not.

• The recognition stage will be processed, if and only
if a positive definition query is returned by “Yes”.
In this stage, the attributes of a single person or the
ReID relationship of a pair of persons are further
determined true or false.

Examples of the two kinds of queries are shown in Fig. 7.
For both kinds of queries, a large number of queries in-

cluding not only positive but negative queries are generated
for a sufficient and comprehensive performance measure-
ment of ISEE. The distributions of each kinds of queries
are summarized in Table 2. Since the negative samples
have much larger variations than that of positive ones,
the numbers of negative queries have 10 times larger than
those of positive queries. Especially the number of negative
queries in RQ’s definition stage is over 100 times larger than
that of positive queries, since each RQ needs to specify two
bounding boxes of person samples.

For AQ, the positive queries in definition stage are gen-
erated by 17,227 persons’ bounding boxes in the RAP, while
the negative queries are generated by random sampling
bounding boxes from non-person regions in test frames.
Based on the positive bounding boxes, each attribute query
in recognition stage corresponds to question the person
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TABLE 2
The statistics of AQs and RQs.

AQ

Definition Stage

# Queries
# Positives 17,227

# Negatives 179,078
Attribute Recognition Stage

# Attributes
# Queries

# Positives # Negatives
1 74,188 365,191
2 22,096 313,442
3 16,682 654,394
4 2,267 189,469

Totally 115,233 1,522,496

RQ

Definition Stage

# Queries
# Positives 109,705

# Negatives 11,572,437
Relationships Recognition Stage

# Queries
# Positives 9,704

# Negatives 100,001

sample existing single or multiple (1-4) attribute categories.
Finally, over 1.5 millions of AQs are generated.

For RQ, a query in definition stage is to determine
whether both the specified bounding boxes contain persons
or not. The definition queries can be obtained by sampling
pairs of bounding boxes from the above definition queries in
AQ. Noted, it will be a negative query if only one bounding
box contains person. Then, with the ReID annotations in
RAP, the positive definition queries are further divided
into positive set and negative set in the recognition stage,
respectively. Totally, there are over 10 millions definition
queries and 100 thousands ReID queries in RQ.

4.3 Analysis Modules and Vision Algorithms
The development of ISEE aims to meet the needs for ef-
ficiently parsing large-scale videos with flexible execution
of multiple analysis algorithms. Moreover, the ISEE plat-
form is also used to study the evaluation problem of a
composable intelligent system containing multiple analysis
modules. Thus, to satisfy the above two requirements, we
choose an end application on person retrieval to validate the
traits of ISEE, which includes three main analysis modules,
i.e. pedestrian detection with tracking (D. & T.), attribute
recognition (A.R.), and re-identification(ReID). Firstly, the
three modules can form various kinds of pipelines including
sequential executions and parallel executions, which can
validate the flexibility and efficiency of the ISEE for ana-
lyzing large-scale video data. Secondly, the three analysis
modules can form a well-defined person retrieval system
including both attribute-based queries and image-based
queries, which can support the subsequent system evalua-
tion naturally. Moreover, based on the collected raw videos,
the RAP dataset [31] is annotated that can provide sufficient
ground truth labels for large-scale system evaluations on
person retrieval. Thus, the aforementioned three analysis
modules are selected to instantiate the ISEE. It should be
noted that the pedestrian ReID in current ISEE is just to
extract ReID features which are then saved as one data
property of person nodes in the graph database. To construct
the similarity edges between person nodes, a top-k ranking
algorithm based on Euclidean distance is implemented over
all person pairs detected in different camera views.

TABLE 3
The analysis modules and corresponding algorithms used in ISEE.

Analysis Modules Algorithms

D. & T.
Detection Association

GMM [56], SSD [8],
Faster-RCNN (FRCNN) [7]

Nearest Neighbour (NN)

A.R. DeepMAR [57], LSPR attr [58]

ReID MSCAN [59], LSPR reid [58]

Concretely, the algorithms encapsulated in ISEE are p-
resented in Table 3. For the module of D. & T., the GM-
M based motion detection with Nearest Neighbour (NN)
tracker is performed on CPUs, while the SSD [8] and Faster-
RCNN (FRCNN) [7] with NN tracker are performed on
GPUs. For A.R. and ReID modules, four state-of-the-art
algorithms (DeepMAR [57], LSPR attr [58], MSCAN [59]
and LSPR reid [58]) are performed, where the deep learning
based recognition models are fine-tuned with the training
samples in RAP and run on GPUs as well. LSPR attr and
LSPR reid are the champion algorithms in the competition
of large-scale pedestrian retrieval [58].

4.4 Performance Metrics
To measure the performance on person retrieval, the metrics
of Precision, Recall and F1 score are adopted, because the
current question-answering diagram can be seen as a series
of binary classifications.

For each kind of queries (AQ and RQ), we calculate the
overall performance over all queries in both of definition
stage (D) and recognition stage (R) as weighted sum models
in the following.

Precision =

∑
I∈{D,R} wIN

tp
I∑

I∈{D,R} wIN
tp
I +

∑
I∈{D,R} wIN

fp
I

(1)

Recall =

∑
I∈{D,R} wIN

tp
I∑

I∈{D,R} wIN
vp
I

(2)

where the subscript I ∈ {D,R} represents one of the query
stages. N tp

I is the number of correctly answered positive
queries in the stage I (a.k.a. true positive); Nfp

I is the
number of wrongly answered negative queries (a.k.a. false
positive);Nvp

I is the number of valid positive queries, where
Nvp
R means the number of practical positive queries in the

recognition stage which correspond to those positive queries
answered correctly in the definition stage; and wI is the
weight parameter to handle the unbalanced distributions of
the queries in two querying stages, i.e., wI = 1

Nv
I

where Nv
I

is the total number of valid queries in the stage I .
Based on the precision and recall, the comprehensive

performance metric F1 score is computed as follows.

F1 = λ · 2 · Precision ·Recall
Precision+Recall

(3)

where λ is a coefficient to award the parsing results which
can answer more queries, i.e., proportional to the number
of invalid queries in practice. Thus, it can be calculated by
Eq. 4, where NI is the total number of queries in stage I
designed in Section 4.2.

λ =

∑
I∈{D,R} wIN

v
I∑

I∈{D,R} wINI
(4)
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It should be noted, for the case study, only two querying
stages are involved in person retrieval, which aims to show
an example of system-level evaluation for a system applica-
tion including multiple vision algorithms. In future studies,
the above performance metrics can be easily extended to
more complicated applications with more than two query-
ing stages, e.g., event retrieval.

5 EXPERIMENTAL RESULTS

5.1 Setups

5.1.1 Assignments of Computing Resources
The ISEE platform is deployed on a cluster which is com-
posed of one master node and five worker nodes. The
hardware information of the cluster is listed in Table 4.

TABLE 4
The basic information of worker nodes used in this paper.

Worker Nodes Node1 Node2 Node3 Node4 Node5 Totally

CPU Model Name
(Intel Xeon)

E5-2620 V4 E5-2618L V3 -

CPU Frequency 2.1GHz 2.3GHz -

#CPU Cores 16 80

Memory 128 GB 640 GB

#GPUs 4 20

GPU Model Name GeForce GTX Titan X (Pascal) -

Network Bandwidth 100Mb/s -

The computing resources assigned to five modules in
ISEE are listed in Table 5, where M.H., D.M., D. & T., A.R.
and ReID are shorten for message handling, data manag-
ing, detection with tracking, attribute recognition and re-
identification, respectively. As presented in Section 3, M.H.
and D.M. are auxiliary modules and the other three are
visual analysis modules. The resources inside each module
are scheduled by the platform automatically.

Since the sum of the assigned resources must be not ex-
ceed the total available resources in the cluster, the settings
on the size of partitions and the number of CPU cores are a
trade-off between the degree of parallelism and the available
resources. Here, for each module, the number of executors
is set to 5 to guarantee that each worker node launches one
executor. And the memory size is set empirically to avoid
the error of out-of-memory.

TABLE 5
Assignment of computing resources to each module on ISEE.

Resource Items
Modules

M.H. D.M. D. & T. A.R. ReID

#Partition
Kafka 10 10 10 10 10
RDD 10 10 10 10 10

#Cores
Driver 1 1 1 1 1

Executor 2 2 2 2 2

Memory
Driver 2GB 2GB 2GB 2GB 2GB

Executor 6GB 6GB 20GB 16GB 16GB

#Executors 5 5 5 5 5

5.1.2 Execution Pipelines
To validate the extensibility and flexibility of ISEE platform,
five execution pipelines are constructed based on different
execution plans and vision algorithms. Fig. 8 shows two

Fig. 8. Two kinds of execution plans. The blue rectangles denote auxil-
iary modules and the orange ones represent analysis modules.

TABLE 6
Five pipelines for running on ISEE.

Execution
Pipeline

Execution
Plan

Vision Algorithms of Analysis Modules
D. & T. A.R. ReID

P1 I GMM & NN DeepMAR -

P2 II GMM & NN DeepMAR MSCAN

P3 II SSD & NN DeepMAR MSCAN

P4 II FRCNN & NN DeepMAR MSCAN

P5 II FRCNN & NN LSPR attr LSPR reid

basic types of execution plans (I and II), in which the blue
rectangles (Message Handling and Data Managing) represent
the auxiliary modules; while the orange ones are visual
analysis modules. The plan I is a simple sequential execution
of D. & T. module and A.R. module. The plan II is generated
by extending I with a ReID module which is executed
in parallel with the A.R. module. Five execution pipelines
are further generated with different execution plans and
different vision algorithms, as shown in Table 6.

5.2 Efficiency Evaluations on Message Centers
For an extensible and flexible platform, message center is
an essential part of ISEE to decouple different analysis
modules. Its performance on Reading/Writing (R/W) in-
termediate data affects the efficiency of ISEE significantly.

Apache Kafka is a highly scalable and distributed mes-
saging system which has been successfully used for decou-
pling processing from data producers to data consumers
in LinkedIn‘s data pipeline. According to its official intro-
duction of use cases [29], in comparison to most messaging
systems Kafka has better throughput, built-in partitioning,
replication, and fault-tolerance which makes it a good solu-
tion for large scale message processing applications.

Thus, due to the above excellent traits, we chose Kafka
as the middle-ware message center for transmitting inter-
mediate data among different applications. Furthermore,
with a specific vision application on person retrieval in
this work, we also conduct an evaluation on three possible
candidates of message centers, i.e., Kafka, MySql and HDFS.
We studied their R/W performance along with different
data sizes which range from 100KB to 2000KB. For each
time, 100 items of messages are written and read through
different types of message center. Table 7 shows the elapsed
time of reading and writing separately. We can see that the
efficiency of Kafka is indeed superior to the other methods
remarkably in both reading and writing tasks. Overall, it
is reasonable to adopt Kafka as the message center in ISEE
platform.
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TABLE 7
R/W performances of different methods for message center.

Data Size
Elapsed Time (s)

Kafka MySQL HDFS

100KB
Read 0.666 1.097 2.288
Write 0.822 2.846 6.289

500KB
Read 2.923 5.708 9.528
Write 5.093 15.083 17.772

1000KB
Read 5.908 10.877 17.411
Write 10.325 28.206 26.246

1500KB
Read 11.264 16.165 26.385
Write 18.054 37.418 36.788

2000KB
Read 20.153 21.705 34.873
Write 25.007 47.655 48.344

5.3 Efficiency Evaluations on Video Parsing
In this section, we firstly validate the scalability of ISEE by
analyzing the time costs with different computing resources.
Then, the efficiencies of processing different sizes of video
data are shown to demonstrate the capability of ISEE for
large-scale video analysis.

Scalability is an essential characteristic of a distributed
platform. It reflects the capability to improve the efficiency
proportionally to the increasing of computing resources.
Here, a set of video files with the total length of about 50
hours(h) are adopted as test samples. And four execution
pipelines (P2∼P5) are implemented individually with dif-
ferent numbers of worker nodes. The speedups of elapsed
time related to one node are shown in Fig. 9. We can find
that the ratios of speedup equal to the ratios of increasing
numbers of nodes approximately for all the four pipelines,
which suggests the scalability of the ISEE platform.
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Fig. 9. The relationships of speedup to number of nodes. It reflects the
speedups about total cost of each pipeline.

Subsequently, we investigate the relationships between
time costs and sizes of video data. We perform five
pipelines, i.e., P1∼P5, on ISEE platform with different sizes
of video data from 10h to 200h. Fig. 10 and Fig. 11 show the
elapsed times of P1 and P2∼P5 with different video lengths
respectively. We can find that the time cost (the red lines
in the figures) is approximately linear proportional to the
amount of video data. And all the three analysis modules
in each pipeline have similar time costs. That is because the
D.&T. module is the bottleneck in current system, which
serves as a preprocessing step to reduce a large amount of
redundancies in raw HD video. Comparing the results of

Fig. 10. The relationships of elapsed time to video length with P1 on
ISEE. The red line reflects the total elapsed time of each pipeline.

(a) Elapsed time of P2 (b) Elapsed time of P3

(c) Elapsed time of P4 (d) Elapsed time of P5

Fig. 11. The relationships of elapsed time to video length with P2, P3,
P4 and P5 on ISEE. The red line also reflects the total elapsed time of
each pipeline.

P1 (Fig. 10) and P2 (Fig. 11(a)), they get similar efficiencies
as that the same vision algorithms are used in the modules
of D. & T. and A.R., and the ReID module with MSCAN
can be completed very quickly within 1 second per tracklet.
However, different from P1 and P2, P3 (Fig. 11(b)) and P4
(Fig. 11(c)) substitute the GMM in D.&T. with complicated
deep learning methods, i.e., SSD and FRCNN respectively,
which are more time consuming as the complexities of SSD
and FRCNN are much higher than the simple GMM based
detector. In addition, compared to P4, the algorithms of
LSPR attr and LSPR reid in P5 (Fig. 11(d)) have higher
computational complexity. The high consuming on GPU
resources makes it impossible to share the same GPU with
other algorithms. The reduced parallelism increases the cost
of P5 significantly.

Finally, the 410h video files (19 million of image frames)
are parsed by ISEE with the tasks of pipelines P2∼P5. The
totally time costs are 4.4h, 6.8h, 16.6h and 34.1h respectively
without frame skipping in processing. Table 8 lists the main
technical characteristics of 4 large-scale platforms reported
recently as well as ours for a qualitative comparison. Com-
pared to other platforms, under the similar workload for
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TABLE 8
Comparisons with other large-scale visual analysis platforms.

Platform Cluster Video Length Analysis Modules Time Consumption

VTT [39] 10 workers
93.5 hours

(1080p)
Object Detection (FRCNN), Tracking, Attributes Recognition,
Pose Recognition, Behavior Detection, Multi-view Fusion, etc.

2 Weeks

Optasia [25] Microsoft‘s Cosmos System 100 GB
License Plate Recognition, Traffic Flow Mapping, Classification
of Vehicles, Object Re-identification

68.35 h

Google [24]
Google‘s Cloud Platform

(40 workers)
912 hours Shot Boundary Detection 2.9 h

Scanner [46]
16 workers

(256 cpu cores, 16 TitanX GPUs)
421GB

(35 million frames)
Object Detection (FRCNN, at a stride of 24 frames), Tracking 10.8 h (5.5h+5.3h)

our
5 workers

(80 cpu cores, 20 TitanX GPUs)
410 hours (720p,

19 million frames)

Person Detection (GMM) with Tracking,
Attributes Recognition (DeepMAR), ReID (MSCAN)

4.4 h

Person Detection (SSD) with Tracking,
Attributes Recognition (DeepMAR), ReID (MSCAN)

6.8 h

Person Detection (FRCNN) with Tracking,
Attributes Recognition (DeepMAR), ReID (MSCAN)

16.6 h

Person Detection (FRCNN) with Tracking,
Attributes Recognition (LSPR attr), ReID (LSPR reid)

34.1 h

processing hundreds of hours videos and multiple analysis
modules (FRCNN is also used in some of the comparison
platforms), the ISEE can achieve a comparable performance
on computing efficiency with relative limited computing
resources (only 5 worker nodes).

5.4 Performance on Person Retrieval
In this section, we will show the performances of both AQ
and RQ, where four execution pipelines, i.e., P2, P3, P4 and
P5, are compared as an example on system-level evaluations
involving multiple visual analysis modules.

5.4.1 Query Results of AQ
For each AQ, as presented in Sec. 4.2, the definition stage
is firstly to check whether a person node can be retrieved
from the graph database according to the spatio-temporal
condition (a bounding box BB at frame t) or not, where
the retrieved person should be detected in frame t and its
spatial overlap with BB should be larger than a threshold,
i.e., intersection-over-union (IoU) score > 0.5. Then, the
recognition stage is executed to check whether the queried
attributes are true or false, if the person node can be re-
trieved correctly. As the larger the threshold of IoU score,
the less likely a person node can be found. We investigate
the impact of the IoU threshold on the performance of AQ,
the precision (Pre.), recall (Rec.) and F1 score are computed
over different IoU thresholds. Their changing trends of the
overall results as well as the results in different stages are
individually presented in Fig. 13. While the results of λ (the
ratio of valid queries in Eq.4 which reflects the trend of recall
in the stage of D) is shown in Fig. 12.

The first row of Fig. 13 presents the Overall performances
in AQ. From Fig. 13(c) we can find that all the four pipelines
achieve the peak value of F1 scores at IoU threshold of 0.6.
Meanwhile, P4 shows the best overall performances except
for the IoU threshold of 0.9, which is mainly due to its
superior values on precision (Fig. 13(a)), recall (Fig. 13(b))
and λ (Fig. 12) as the IoU thresholds ranging from 0.5 to 0.8.
While the lower value on λ at IoU threshold of 0.9 results
in an inferior performance. Fig. 13(c) also indicates that the
pipelines (P3, P4 and P5) with deep learning methods used
in D. & T. are inclined to achieve better overall performances
than that with traditional method (P2). Especially, the use of
FRCNN (P4 and P5) that promotes the overall performances
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Fig. 12. The ratios of valid queries (λ) about P2, P3, P4 and P5 with
various IoU thresholds in AQ.

remarkably with the IoU threshold changing from 0.5 to 0.8.
In addition, compared to the results of P4 and P5, the use of
LSPR attr in A.R. drops down the overall performances of
P5, which is consistent with the results in [58] evaluated on
the RAP dataset.

The performances of Stage D and Stage R are displayed
in the last two rows of Fig. 13. It is shown that the perfor-
mances of P5 are worse in the stage R, as an inferior attribute
recognition model is adopted. As shown in Fig. 13(f), P4
and P5 achieve the highest F1 scores in the stage D with the
IoU thresholds ranging from 0.5 to 0.8. While P3 gets higher
values in recall than P2 with larger IoU thresholds, which
reflects its superior ability to detect more persons with high-
quality bounding boxes than P2. The large superiorities
of deep learning methods used in D. & T. of P3, P4 and
P5 make them achieve higher recognition performances in
the stage R (see Fig. 13(i)). Meanwhile, the much better
performances in the stage D combed with the large value
of λ result in the superiority of P4 finally.

In addition, from the curves of F1 scores of the four
pipelines, we can find that the F1 scores in the stage R
(Fig. 13(i)) are improved monotonously along with the
increasing of IoU threshold which results in high-quality
detected bounding boxes; while the F1 scores (Fig. 13(f)) in
the stage D increase firstly and then go down with larger
IoU thresholds due to the increasing of miss retrievals. The
performance of stage D has a consistent trend with the
overall performance (Fig. 13(c)), which displays the key
role of the detection module on the performance of whole
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Fig. 13. Performances of P2, P3, P4 and P5 with various IoU thresholds
in AQ. (a), (b) and (c) reflect the changing trends on Precision, Recall
and F1 about the overall performances in AQ; (d), (e) and (f) are about
Stage D; (g), (h) and (i) are about Stage R.

system. Meanwhile, we can also find that the best overall
performances of the two pipelines are inferior to the peak
values of both stage D and stage R. It reflects the rationality
of designed metric that the final overall performance is
usually limited by the one with worst performance in a
pipeline, which is known as Liebig’s law of the minimum
[60]. And it also indicates that is a challenging problem to
integrate multiple analysis components into a composable
visual intelligent system.

5.4.2 Query Results of RQ
Besides AQ on unary object retrieval in large-scale videos,
we also test the ISEE platform with RQ to retrieve binary
relations between two visual objects.

As presented in Sec. 4.2, in the definition stage of RQ,
the two bounding boxes as querying condition are firstly
verified in the parsing results. If and only if a positive
definition query (both bounding boxes in the query indeed
contain persons) is responded by two correct person nodes
from the graph database (a.k.a., a valid query in the next
recognition stage), we will further inquire whether one ReID

path within certain limited steps exists between the two
persons. In our experiments, we construct the similarity
edges for each person node with its 10 nearest neighbors
based on the ReID features. And the maximal number of
steps (path length) is set to 3. In practice, we calculate the
different metrics of RQ for each path length.

IoU>0.6
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Fig. 14. Metric results of RQ with different path lengths of P2, P3, P4
and P5, where the IoU threshold is 0.6.

Fig. 15. An illustration on the equation to calculate the average values
of different metrics used in RQ.

Fig. 14 shows us the changing trends of F1 scores along
with the path length ranging from 1 to 3 at the IoU threshold
of 0.6. As expected, we can find that the F1 scores increase
monotonically along with the path length. Similar situations
can also be obtained with other IoU thresholds. To measure
the performances, we define the average metric with Eq. 5
which reflects the shadow area under the score curve. An
illustration is shown in Fig. 15, where the Ii is the value of a
metric with one specific path length; Nl is the maximal path
length; and Ai denotes the area under the curve; 1

Nl−1 is the
normalization term. The curves shown in Fig. 17 presents
the calculated average values of different metrics.

Average =
1

Nl − 1

Nl−1∑
i=1

Ai

=
1

2(Nl − 1)

Nl−1∑
i=1

(Ii + Ii+1), Nl ≥ 2

(5)

The first row of Fig. 17 also presents the Overall perfor-
mances on precision, recall and F1 score in RQ. While the
values of λ, which reflects the ratio of valid queries in RQ,
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Fig. 16. The ratios of valid queries (λ) about P2, P3, P4 and P5 with
various IoU thresholds in RQ.
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Fig. 17. Performances of P2, P3, P4 and P5 with various IoU thresholds
in RQ. (a), (b) and (c) reflect the changing trends on Precision, Recall
and F1 about the overall performances in RQ; (d), (e) and (f) are about
Stage D; (g), (h) and (i) are about Stage R.

are shown in Fig. 16. As shown in Fig. 17(c), we can get
similar conclusion with AQ from these results that the peak
performances (F1) of the four pipelines are at IoU threshold
of 0.6. And the pipelines (P3, P4 and P5) whose D.&T. is
realized with deep model also present better performances

than those of the traditional one (P2). However, different
from AQ, P5 achieves the best results as the LSPR reid
is obtained in the ReID module whose performances are
superior to the MSCAN significantly which is used in other
pipelines.

We also explore the performances of Stage D and Stage
R in isolation. Their results are plotted in the last two rows
of Fig. 17, respectively. We can find (see Fig. 17(f), Fig. 17(d)
and Fig. 17(e)) that P4 and P5 get better performances (F1)
than P2 and P3 in the stage D as the higher precision and
recall are achieved. Furthermore, as the use of strong ReID
algorithm, the P5 produces much higher performance in the
stage R combined with the better results in the Stage D, so
as to achieve the best overall performance.

The overall F1 score as well as the F1 scores of indi-
vidual stages (D and R) of the four pipelines are plotted in
Fig. 17(c), Fig. 17(f) and Fig. 17(i) respectively. For all of the
four pipelines, the trends of F1 scores of stage D & R and
overall are similar to those of AQ in Fig. 13. It also reflects
the dominant effect of detection algorithm in stage D on the
final overall performance. While the overall performances
in RQ are much lower than those of AQ except for P5. It
is because that the miss detections of queried persons will
lead to more serious effects on RQ than AQ, as two persons
are involved in a RQ query rather than only one person in
an AQ query. However, the use of strong ReID algorithm
in P5 alleviates the issue to some extent which leads to
its high performance in RQ. Meanwhile, the best overall
performances of the four pipelines are also inferior to the
peak values of both the stage D and the stage R, which again
indicates the rationality of designed performance metric.

5.5 Remarks
From the above extensive experiments on both system
efficiency and person retrieval performance, some main
characteristics and findings are summarized as follows.

• As a large-scale visual exploration platform, the ISEE
integrates multiple visual analysis modules with the
de-coupling design of middle-ware message center
into a Spark Streaming based computing framework,
which enables the system to perform various visual
analysis pipelines flexibly and efficiently. Compared
to other popular large-scale visual analysis platforms
(Table 8), the ISEE achieves comparable high efficien-
cy (more than 90 times speed-up compared to raw
video length) with only 5 worker nodes.

• As an example of system-level evaluation, we adopt
the ISEE to perform an end-to-end application on
person retrieval. From the experimental results in
Sec. 5.4, we find that person detection is the bot-
tleneck of system performance, which is the most
time consuming part of whole video parsing process
(Fig. 10 and Fig. 11). Moreover, the overall perfor-
mance on person retrieval is mainly affected by the
results of person detection (the third columns of
Fig.13 and Fig.17), where the threshold of IoU in
person detection plays an important role for overall
performance for both query types.

• The comparisons among various pipelines with three
pedestrian detection models, i.e., GMM, SSD and
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FRCNN, indicate that the latter two algorithms
with deep models provide more accurate detection
bounding boxes, so that superior performances of
subsequent person retrieval based on attributes or
person images can be obtained (Fig. 13 and Fig. 17).
Especially, the combination of FRCNN and strong
ReID model (LSPR reid) improve the overall perfor-
mance in RQ remarkably. It indicates that the com-
bination of superior models is inclined to obtain ro-
bust performance in a composable intelligent system.
However, the efficiency of the robust models are usu-
ally more time- and resources-consuming (Table 8).
How to make a compromise between the accuracy
and efficiency is still an open issue in constructing
such composable AI system.

• As shown in the baseline system evaluation results
on person retrieval, the best overall performance
of two kinds of queries are lower than 70% in the
wild surveillance scenes, which are still not satisfying
for real applications. Although the deep learning
based algorithms have achieved high performance
for many single visual recognition tasks, it is still
a challenging problem to integrate multiple analysis
components into a composable AI system [19].

6 CONCLUSION

In this paper, ISEE, a large-scale visual scene exploration
and evaluation platform is established by utilizing recent
advanced big data tools based on heterogeneous computing
resources (CPUs and GPUs). Combining with the Spark
Streaming computing framework, the decoupling design
of middle-ware message center, the Yarn based scheduling
strategy as well as the highly customized task flow enable
ISEE to integrate multiple kinds of visual analysis modules
and execute various analysis pipelines flexibly and efficient-
ly. To validate the effectiveness of ISEE, we perform an
end-to-end system application on person retrieval, where
hundreds of hours of surveillance videos with millions of
image frames are parsed into a semantic graph with millions
of entity nodes and relationships, by multiple kinds of
visual analysis modules. As a case study of ISEE system
evaluation, we compare different execution plans involving
multiple visual analysis modules from both efficiency and
performance. The efficiency of video parsing is measured
by time costs and the performance of person retrieval is
evaluated by millions of person queries based on attributes
and visual similarity. The system-level evaluations may
inspire researchers to improve visual analysis algorithms
and combining strategies from the view of a composable
intelligent system.

In future work, we will further extend the ISEE with
more visual analysis modules and study the combinational
optimization problem to improve the efficiency and the
performance of overall system. Moreover, facing the big
video data rising from real open environments, we will in-
troduce a new evaluation mechanism based on “human-in-
the-loop” to adopt users’ feedbacks to evaluate the system
performance. In future, a module of adaptive learning from
increasing meta-data and users’ feedbacks will be added, so

that the ISEE can be evolved as a life-long learning vision
system.

APPENDIX

TABLE 9
Acronyms used in this paper.

Acronym Full Name

AI Artificial Intelligence
App. Application
AQ Attribute-based Query
BB Bounding Box
D Definition stage in the query
DAG(s) Directed Acyclic Graph(s)
DLL(s) Dynamic Link Library(Libraries)
D.M. Data Managing
D. & T. Detection with Tracking
DStream Discredited Stream
E3 Efficiency, Extensibility, and Evaluation
fp false positive
FRCNN Faster-RCNN
GMM Gaussian Mixture Model
h hour(s)
HDFS Hadoop Distributed File System
IoU Intersection-over-Union
ISEE Intelligent Scene Exploration and Evaluation
IVS Intelligent Video Surveillance
JNI(s) Java Native Interface(s)
M.H. Message Handling
min minute(s)
MPI Message Passing Interface
NN Nearest Neighbour
QA Question-Answering
R Recognition stage in the query
RDD(s) Resilient Distributed Dataset(s)
ReID Re-Identification
RQ relationship-based query
R/W Reading/Writing
S3 Smart Surveillance System
tp true positive
UI User Interface
VSAM Video Surveillance and Monitoring
VTT Visual Turing Test
W4 Who, When, Where and What

TABLE 10
Variables and parameters used in this paper.

Variable/
Parameter

Meaning Value

Ntp
I # correctly answered positive queries in the stage I I ∈ {D,R}

Nfp
I # wrongly answered negative queries in the stage I I ∈ {D,R}

Nvp
I # valid positive queries in the stage I I ∈ {D,R}

Nv
I # valid queries in the stage I I ∈ {D,R}

NI total number of queries in stage I I ∈ {D,R}

wI
the weight parameter to handle the unbalanced
distributions of the queries

I ∈ {D,R}

λ
a coefficient to award the parsing results
which can answer more queries

-

Nl the maximal path length 3 in this paper
Ii the value of a metric with one specific path length i ∈ {1, ..., Nl}
Ai the area under the curve shown in Fig. 15 -
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